Инфоурок / Начальные классы / Рабочие программы / Рабочая программа по математике УМК Школа 2100

Рабочая программа по математике УМК Школа 2100

библиотека
материалов

[Введите текст]


Муниципальное казенное общеобразовательное учреждение

«Парфеньевская средняя общеобразвательная школа»

Парфеньевского муниципального района Костромской области


Согласовано

Пр. заседания ШМО

1 от 29.08.2012 г.

Руководитель ШМО




Согласовано

29.08.2012 г.

Заместитель директора по УВР







Зайцева М. Е.


Утверждаю

Приказ № 135

От 30.08 2012 г.

Директор школы







Магомеднабиева Е. Г.






Рабочая программа

по учебному предмету

«Математика»

( «Школа 2100»)


Период обучения 1-4 классы






















2012 год


Содержание

1. Пояснительная записка………………………………………………стр.3

2. Общая характеристика учебного предмета …………………… ...стр.4

3. Описание места учебного предмета в учебном плане…………….стр.9

4. Требования к результатам освоения учебного предмета.................стр.9

5. Содержание учебного предмета …………………………. …стр.22

6. Тематическое планирование………………………………………..стр.28

7. Учебно-методическое и материально-техническое обеспечение

образовательного процесса…………………………………………стр.30

8. Контрольно-оценочные средства (Приложение)








































Пояснительная записка.


Рабочая программа составлена на основе следующих документов:

  1. Федеральный Закон Российской Федерации от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;

  2. Федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Минобразования РФ от 01.02.2011 г. №1897

  3. Примерная программа по учебным предметам (начальная школа 1-4 классы) (Стандарты второго поколения) составлена на основе ФГОС начального общего образования.

  4. Постановление Главного государственного санитарного врача РФ от 29 декабря 2010 г. № 189.«Об утверждении СанПиН 2.4.2.2821-10 «Санитарно - эпидемиологические требования» (зарегистрировано в Минюсте РФ 3 марта 2011 г. Регистрационный N 19993).

  5. Приказ Министерства образования и науки РФ от 4 октября 2010 №986 (Зарегистрирован в Минюсте РФ 3 февраля 2011 г. Регистрационный N 19682) «Об утверждении Федеральных требований к образовательным учреждениям в части минимальной оснащенности учебного процесса и оборудования учебных помещений».

  6. Приказ Министерства образования и науки РФ от28 декабря 2010 №2106 (Зарегистрирован в Минюсте РФ 2 февраля 2011 г. Регистрационный N 19676) «Об утверждении Федеральных требований к образовательным учреждениям в части охраны здоровья обучающихся, воспитанников».

  7. Письмо Минобрнауки РФ от 10 Февраля 2011 г. N 03-105 "Об использовании учебников и учебных пособий в образовательном процессе"

  8. Примерные программы по учебным предметам. Начальная школа 1-4 классы.– М.: Просвещение, 2010

Рабочая программа направлена на:

- формирование универсальных учебных действий (Личностные, метапредметные, предметные результаты) для основного общего образования, преемственность с программой начального общего образования

- на реализацию системно-деятельностного подхода в организации образовательного процесса, который обеспечивает:

формирование готовности к саморазвитию и непрерывному образованию;

проектирование и конструирование социальной среды развития обучающихся в системе образования;

активную учебно-познавательную деятельность обучающихся;

построение образовательного процесса с учётом индивидуальных возрастных, психологических и физиологических особенностей обучающихся

Курс математики в начальной школе – часть единого непрерывного курса обучения, поэтому он ориентирован на предмет и цели обучения математики в основной школе, основными целями которого являются:

Развитие образного и логического мышления, воображения; формирование предметных умений и навыков, необходимых для успешного решения учебных и практических задач, продолжения образования;

освоение основ математических знаний, формирование первоначальных представлений о математике;

воспитание интереса к математике, стремления использовать математические знания в повседневной жизни.

Исходя из этого, назначение предмета « Математики» в начальной школе состоит в том , чтобы заложить основу развития у учащихся познавательных действий, в первую очередь логических, включая и знаково-символические, а также таких, как планирование (цепочки действий по задачам), систематизация и структурирование знаний, преобразование информации, моделирование, дифференциация существенных и несущественных условий, аксиоматика, формирование элементов системного мышления, выработка вычислительных навыков.

Исходя из общих положений концепции математического образования, начальный курс математики призван решать следующие задачи:

  • формирование элементов самостоятельной интеллектуальной деятельности на основе овладения несложными математическими методами познания окружающего мира (умения устанавливать, описывать, моделировать и объяснять количественные и пространственные отношения);

  • развитие основ логического, знаково-символического и алгоритмического мышления;

  • развитие пространственного воображения;

  • развитие математической речи;

  • формирование системы начальных математических знаний и умений их применять для решения учебно-познавательных и практических задач;

  • формирование умения вести поиск информации и работать с ней;

  • формирование первоначальных представлений о компьютерной грамотности;

  • развитие познавательных способностей;

  • воспитание стремления к расширению математических знаний;

  • формирование критичности мышления;

  • развитие умений аргументировано обосновывать и отстаивать высказанное суждение, оценивать и принимать суждения других.

Общая характеристика учебного предмета

Программа составлена в соответствии с требованиями ФГОС начального общего образования и программой « Математика» авторов Т.Е.Демидовой, С.А.Козловой, А.П.Тонких. Программа обеспечена УМК «Школа 2100» тех же авторов. В курсе математики выделяются следующие содержательные линии.

1 Числа и операции над ними Понятие натурального числа является одним из центральных понятий начального курса математики. Формирование этого понятия осуществляется практически в течение всех лет обучения. Раскрывается это понятие на конкретной основе в результате практического оперирования конечными предметными множествами; в процессе счёта предметов, в процессе измерения величин. В результате раскрываются три подхода к построению математической модели понятия «число»: количественное число, порядковое число, число как мера величины.

В тесной связи с понятием числа формируется понятие о десятичной системе счисления. Раскрывается оно постепенно, в ходе изучения нумерации и арифметических операций над натуральными числами. При изучении нумерации деятельность учащихся направляется на осознание позиционного принципа десятичной системы счисления и на соотношение разрядных единиц.

Важное место в начальном курсе математики занимает понятие арифметической операции. Смысл каждой арифметической операции раскрывается на конкретной основе в процессе выполнения операций над группами предметов, вводится соответствующая символика и терминология. При изучении каждой операции рассматривается возможность её обращения.

Важное значение при изучении операций над числами имеет усвоение табличных случаев сложения и умножения. Чтобы обеспечить прочное овладение ими, необходимо, во-первых, своевременно создать у детей установку на запоминание, во-вторых, практически на каждом уроке организовать работу тренировочного характера. Задания, предлагаемые детям, должны отличаться разнообразием и способствовать включению в работу всех детей класса. Необходимо использовать приёмы, формы работы, способствующие поддержанию интереса детей, а также различные средства обратной связи.

В предлагаемом курсе изучаются некоторые основные законы математики и их практические приложения:

-  коммутативный(переместительный) закон сложения и умножения;

-  ассоциативный(сочетательный) закон сложения и умножения;

-  дистрибутивный( распределительный) закон умножения относительно сложения.

Все эти законы изучаются в связи с арифметическими операциями, рассматриваются на конкретном материале и направлены, главным образом, на формирование вычислительных навыков учащихся, на умение применять рациональные приёмы вычислений.

Следует отметить, что наиболее важное значение в курсе математики начальных классов имеют не только сами законы, но и их практические приложения. Главное – научить детей применять эти законы при выполнении устных и письменных вычислений, в ходе решения задач, при выполнении измерений. Для усвоения устных вычислительных приемов используются различные предметные и знаковые модели.

Наряду с устными приёмами вычислений в программе большое значение уделяется обучению детей письменным приёмам вычислений. При ознакомлении с письменными приёмами важное значение придается алгоритмизации.

В программу курса введены понятия «целое» и «часть». Учащиеся усваивают разбиение на части множеств и величин, взаимосвязь между целым и частью. Это позволяет им осознать взаимосвязь между операциями сложения и вычитания, между компонентами и результатом действия, что, в свою очередь, станет основой формирования вычислительных навыков, обучения решению текстовых задач и уравнений.

Современный уровень развития науки и техники требует включения в обучение школьников знакомство с моделями и основами моделирования, а также формирования у них навыков алгоритмического мышления. Без применения моделей и моделирования невозможно эффективное изучение исследуемых объектов в различных сферах человеческой деятельности, а правильное и чёткое выполнение определённой последовательности действий требует от специалистов многих профессий владения навыками алгоритмического мышления. Разработка и использование станков-автоматов, компьютеров, экспертных систем, долгосрочных прогнозов – вот неполный перечень применения знаний основ моделирования и алгоритмизации. Поэтому формирование у младших школьников алгоритмического мышления, умений построения простейших алгоритмов и моделей – одна из важнейших задач современной общеобразовательной школы.

2. Величины и их измерение. Величина также является одним из основных понятий начального курса математики. В процессе изучения математики у детей необходимо сформировать представление о каждой из изучаемых величин (длина, масса, время, площадь, объем и др.) как о некотором свойстве предметов и явлений окружающей нас жизни, а также умение выполнять измерение величин.

Формирование представления о каждых из включённых в программу величин и способах её измерения имеет свои особенности. Однако можно выделить общие положения, общие этапы, которые имеют место при изучении каждой из величин в начальных классах:

1)  выясняются и уточняются представления детей о данной величине (жизненный опыт ребёнка);

2)  проводится сравнение однородных величин (визуально, с помощью ощущений, непосредственным сравнением с использованием различных условных мерок и без них);

3)  проводится знакомство с единицей измерения данной величины и с измерительным прибором;

4) формируются измерительные умения и навыки;

5)  выполняется сложение и вычитание значений однородных величин, выраженных в единицах одного наименования (в ходе решения задач);

6)  проводится знакомство с новыми единицами измерения величины;

7) выполняется сложение и вычитание значений величины, выраженных в единицах двух наименований;

8) выполняется умножение и деление величины на отвлечённое число. При изучении величин имеются особенности и в организации деятельности учащихся.

Важное место занимают средства наглядности как демонстрационные, так и индивидуальные, сочетание различных форм обучения на уроке (коллективных, групповых и индивидуальных).

В ходе формирования у учащихся представления о величинах создаются возможности для пропедевтики понятия функциональной зависимости. Основной упор при формировании представления о функциональной зависимости делается на раскрытие закономерностей того, как изменение одной величины влияет на изменение другой, связанной с ней величины. Эта взаимосвязь может быть представлена в различных видах: рисунком, графиком, схемой, таблицей, диаграммой, формулой, правилом.

3. Текстовые задачи.

В начальном курсе математики особое место отводится простым (опорным) задачам. Умение решать такие задачи − фундамент, на котором строится работа с более сложными задачами.

В ходе решения опорных задач учащиеся усваивают смысл арифметических действий, связь между компонентами и результатами действий, зависимость между величинами и другие вопросы.

Работа с текстовыми задачами является очень важным и вместе с тем весьма трудным для детей разделом математического образования. Процесс решения задачи является многоэтапным: он включает в себя перевод словесного, текста на язык математики (построение математической модели), математическое решение, а затем анализ полученных результатов. Работе с текстовыми задачами следует уделить достаточно много времени, обращая внимание детей на поиск и сравнение различных способов решения задачи, построение математических моделей, грамотность изложения собственных рассуждений при решении задач.

Учащихся следует знакомить с различными методами решения текстовых задач: арифметическим, алгебраическим, геометрическим, логическим и практическим; с различными видами математических моделей, лежащих в основе каждого метода; а также с различными способами решения в рамках выбранного метода.

Решение текстовых задач даёт богатый материал для развития и воспитания учащихся.

Краткие записи условий текстовых задач – примеры моделей, используемых в начальном курсе математики. Метод математического моделирования позволяет научить школьников: а) анализу (на этапе восприятия задачи и выбора пути реализации решения); б) установлению взаимосвязей между объектами задачи, построению наиболее целесообразной схемы решения; в) интерпретации полученного решения для исходной задачи; г) составлению задач по готовым моделям и др.

4. Элементы геометрии.

Геометрический материал изучается в течение всех лет обучения в начальных классах, начиная с первых уроков.

В изучении геометрического материала просматриваются два направления:

- формирование представлений о геометрических фигурах;

- формирование некоторых практических умений, связанных с построением геометрических фигур и измерениями.

Геометрический материал распределён по годам обучения и по урокам так, что при изучении он включается отдельными частями, которые определены программой и соответствующим учебником.

Предложенные в учебнике упражнения, в ходе выполнения которых происходит формирование представлений о геометрических фигурах, можно охарактеризовать как задания:

- в которых геометрические фигуры используются как объекты для пересчитывания;

на классификацию фигур;

- на выявление геометрической формы реальных объектов или их частей;

- на построение геометрических фигур;

- на разбиение фигуры на части и составление её из других фигур;

- на формирование умения читать геометрические чертежи;

- вычислительного характера (сумма длин сторон многоугольника и др.).

5. Элементы алгебры. В курсе математики для начальных классов формируются некоторые понятия, связанные с алгеброй. Это понятия выражения, равенства, неравенства (числового и буквенного), уравнения и формулы.

6. Элементы стохастики. Наша жизнь состоит из явлений стохастического характера. Поэтому современному человеку необходимо иметь представление об основных методах анализа данных и вероятностных закономерностях, играющих важную роль в науке, технике и экономике. В этой связи элементы комбинаторики, теории вероятностей и математической статистики входят в школьный курс математики в виде одной из сквозных содержательно-методических линий, которая даёт возможность накопить определённый запас представлений о статистическом характере окружающих явлений и об их свойствах.

В начальной школе стохастика представлена в виде элементов комбинаторики, теории графов, наглядной и описательной статистики, начальных понятий теории вероятностей. С их изучением тесно связано формирование у младших школьников отдельных комбинаторных способностей, вероятностных понятий («чаще», «реже», «невозможно», «возможно» и др.), начал статистической культуры.

Базу для решения вероятностных задач создают комбинаторные задачи. Использование комбинаторных задач позволяет расширить знания детей о задаче, познакомить их с новым способом решения задач; формирует умение принимать решения, оптимальные в данном случае; развивает элементы творческой деятельности.

Комбинаторные задачи, предлагаемые в начальных классах, как правило, носят практическую направленность и основаны на реальном сюжете. Это вызвано в первую очередь психологическими особенностями младших школьников, их слабыми способностями к абстрактному мышлению. В этой связи система упражнений строится таким образом, чтобы обеспечить постепенный переход от манипуляции с предметами к действиям в уме.

Такое содержание учебного материала способствует развитию внутрипредметных и межпредметных связей (в частности, математики и естествознания), позволяет осуществлять прикладную направленность курса, раскрывает роль современной математики в познании окружающей действительности, формирует мировоззрение. Человеку, не понявшему вероятностных идей в раннем детстве, в более позднем возрасте они даются нелегко, так как многое в теории вероятностей кажется противоречащим жизненному опыту, а с возрастом опыт набирается и приобретает статус безусловности. Поэтому очень важно формировать стохастическую культуру, развивать вероятностную интуицию и комбинаторные способности детей в раннем возрасте.

В начальной школе стохастика представлена в виде элементов комбинаторики, наглядной и описательной статистики, начальных понятий теории вероятностей. С их изучением тесно связано формирование у младших школьников отдельных комбинаторных способностей, вероятностных понятий («чаще», «реже», «невозможно», «возможно» и др.), начал статистической культуры.

7. Нестандартные и занимательные задачи. В настоящее время одной из тенденций улучшения качества образования становится ориентация на развитие творческого потенциала личности ученика на всех этапах обучения в школе, на развитие его творческого мышления, на умение использовать эвристические методы в процессе открытия нового и поиска выхода из различных нестандартных

Таким образом, предметные знания и умения, приобретённые при изучении математики в начальной школе, первоначальное овладение математическим языком являются опорой для изучения смежных дисциплин, фундаментом обучения в старших классах общеобразовательных учреждений.

 Формы организации образовательного процесса

К формам организации образовательного процесса относятся типы и формы уроков.

Типы уроков

Традиционный тип урока

Нетрадиционный тип урока

1

урок объяснения нового материала

урок-конференция

2

урок закрепления знаний

урок-путешествие

3

урок повторения

урок-соревнование

4

урок обобщения и систематизации знаний

урок-игра

5

урок контроля знаний

интегрированный урок

6


урок-праздник

7


урок – ролевая игра

8


урок-КВН

9


урок-беседа

Методы обучения

Методы обучения - это «способы работы учителя и обучающихся, при помощи которых достигается овладение знаниями, умениями и навыками, формируется мировоззрение учащихся, развиваются их способности». С точки зрения эффективности затрат времени школьников и учителей методы подразделяет на три группы: методы организации учебно-познавательной деятельности; методы ее стимулирования; методы контроля за ее эффективностью.

Можно выделить следующие общедидактические методы, характеризующие познавательную деятельность обучающихся:

1. Объяснительно-иллюстративный, или информационно рецептивный;

2. Репродуктивный;

3. Метод проблемного изложения;

4. Эвристический или частично-поисковый;

5. Исследовательский.

Каждый метод обучения, применяемый учителем, связан непосредственно соответствующими этому методами, приемами и видами учебной деятельности.

Основные формы обучения:

- фронтальная форма обучения

- групповая (парная) форма обучения; группы сменного состава

- индивидуальная форма обучения

- коллективная форма организации обучения

Технологии обучения

В учебном процессе используются современные педагогические технологии. Обучение по данной программе ведется с использованием элементов системно-деятельностного подхода, здоровьесберегающих технологий, технологии активизации познавательной деятельности школьника, педагогики сотрудничества, технологии дифференцированного обучения, технологии личностно-ориентированного обучения, компьютерной технологии,, информационно-коммуникационного, игрового обучения, методов проектов, технологии критического обучения.


Описание места учебного предмета в учебном плане.

В соответствии с федеральным базисным учебным планом предмет « Математика» изучается с 1 по 4 класс. Общий объём учебного времени составляет 540 часов(4 часа в неделю, 136часов в год 1 кл 132 час).

Обоснование выбора примерной программы для разработки рабочей программы.

Данная программа выбрана, так как в школе выбран УМК «Школа 2100»


Требования к результатам освоения учебного предмета.


Планируемые результаты изучения учебного предмета « Математика» за курс начальной школы (1-4)

В результате изучения курса математика обучающиеся на уровне начального общего образования:

- научатся использовать начальные математические знания для описания окружающих предметов, процессов, явлений, оценки количественных и пространственных отношений;

- овладеют основами логического и алгоритмического мышления, пространственного воображения и математической речи, приобретут необходимые вычислительные навыки;

- научатся применять математические знания и представления для решения учебных задач, приобретут начальный опыт применения математических знаний в повседневных ситуациях;

- получат представление о числе как результате счета и измерения, о десятичном принципе записи чисел; научатся выполнять устно и письменно арифметические действия с числами; находить неизвестный компонент арифметического действия; составлять числовое выражение и находить его значение; накопят опыт решения текстовых задач;

- познакомятся с простейшими геометрическими формами, научатся распознавать, называть и изображать геометрические фигуры, овладеют способами измерения длин и площадей;

- приобретут в ходе работы с таблицами и диаграммами важные для практико ориентированной математической деятельности умения, связанные с представлением, анализом и интерпретацией данных; смогут научиться извлекать необходимые данные из таблиц и диаграмм, заполнять готовые формы, объяснять, сравнивать и обобщать информацию, делать выводы и прогнозы.

Числа и величины

Выпускник научится:

- читать, записывать, сравнивать, упорядочивать числа от нуля до миллиона;

- устанавливать закономерность — правило, по которому составлена числовая последовательность, и составлять последовательность по заданному или самостоятельно выбранному правилу (увеличение/уменьшение числа на несколько единиц, увеличение/уменьшение числа в несколько раз);

- группировать числа по заданному или самостоятельно установленному признаку;

- классифицировать числа по одному или нескольким основаниям, объяснять свои действия;

- читать, записывать и сравнивать величины (массу, время, длину, площадь, скорость), используя основные единицы измерения величин и соотношения между ними (килограмм — грамм; час — минута, минута — секунда; километр — метр, метр — дециметр, дециметр — сантиметр, метр — сантиметр, сантиметр — миллиметр).

Выпускник получит возможность научиться:

- выбирать единицу для измерения данной величины (длины, массы, площади, времени), объяснять свои действия.

Арифметические действия

Выпускник научится:

- выполнять письменно действия с многозначными числами (сложение, вычитание, умножение и деление на однозначное, двузначное числа в пределах 10 000) с использованием таблиц сложения и умножения чисел, алгоритмов письменных арифметических действий (в том числе деления с остатком);

- выполнять устно сложение, вычитание, умножение и деление однозначных, двузначных и трёхзначных чисел в случаях, сводимых к действиям в пределах 100 (в том числе с нулём и числом 1);

- выделять неизвестный компонент арифметического действия и находить его значение;

- вычислять значение числового выражения (содержащего 2—3 арифметических действия, со скобками и без скобок).

Выпускник получит возможность научиться:

- выполнять действия с величинами;

- использовать свойства арифметических действий для удобства вычислений;

- проводить проверку правильности вычислений (с помощью обратного действия, прикидки и оценки результата действия и др.).

Работа с текстовыми задачами

Выпускник научится:

- устанавливать зависимость между величинами, представленными в задаче, планировать ход решения задачи, выбирать и объяснять выбор действий;

- решать арифметическим способом (в 1—2 действия) учебные задачи и задачи, связанные с повседневной жизнью;

- решать задачи на нахождение доли величины и величины по значению её доли (половина, треть, четверть, пятая, десятая часть);

- оценивать правильность хода решения и реальность ответа на вопрос задачи.

Выпускник получит возможность научиться:

- решать задачи в 3—4 действия;

- находить разные способы решения задачи.

Пространственные отношения

Геометрические фигуры

Выпускник научится:

- описывать взаимное расположение предметов в пространстве и на плоскости;

- распознавать, называть, изображать геометрические фигуры (точка, отрезок, ломаная, прямой угол, многоугольник, треугольник, прямоугольник, квадрат, окружность, круг);

- выполнять построение геометрических фигур с заданными измерениями (отрезок, квадрат, прямоугольник) с помощью линейки, угольника;

- использовать свойства прямоугольника и квадрата для решения задач;

- распознавать и называть геометрические тела (куб, шар);

- соотносить реальные объекты с моделями геометрических фигур.

Выпускник получит возможность научиться

- распознавать, различать и называть геометрические тела: параллелепипед, пирамиду, цилиндр, конус.

Геометрические величины

Выпускник научится:

- измерять длину отрезка;

- вычислять периметр треугольника, прямоугольника и квадрата, площадь прямоугольника и квадрата;

- оценивать размеры геометрических объектов, расстояния приближённо (на глаз).

Выпускник получит возможность научиться

- вычислять периметр многоугольника, площадь фигуры, составленной из прямоугольников.

Работа с информацией

Выпускник научится:

- читать несложные готовые таблицы;

- заполнять несложные готовые таблицы;

- читать несложные готовые столбчатые диаграммы.

Выпускник получит возможность научиться:

- читать несложные готовые круговые диаграммы;

- достраивать несложную готовую столбчатую диаграмму;

- сравнивать и обобщать информацию, представленную в строках и столбцах несложных таблиц и диаграмм;

- понимать простейшие выражения, содержащие логические связки и слова («…и…», «если… то…», «верно/неверно, что…», «каждый», «все», «некоторые», «не»);

- составлять, записывать и выполнять инструкцию (простой алгоритм), план поиска информации;

- распознавать одну и ту же информацию, представленную в разной форме (таблицы и диаграммы);

- планировать несложные исследования, собирать и представлять полученную информацию с помощью таблиц и диаграмм;

- интерпретировать информацию, полученную при проведении несложных исследований (объяснять, сравнивать и обобщать данные, делать выводы и прогнозы).


























Личностные, метапредметные и предметные планируемые результаты.

Все результаты (цели) освоения учебно-методического курса образуют целостную систему вместе с предметными средствами. Их взаимосвязь можно увидеть на схеме.

http://www.school2100.ru/uroki/elementary/correlation_matem_nach.png


1-й класс

Личностными результатами изучения курса «Математика» в 1-м классе является формирование следующих умений:

- Определять и высказывать под руководством педагога самые простые общие для всех людей правила поведения при сотрудничестве (этические нормы).

- В предложенных педагогом ситуациях общения и сотрудничества, опираясь на общие для всех простые правила поведения, делать выбор, при поддержке других участников группы и педагога, как поступить.

Средством достижения этих результатов служит организация на уроке парно групповой работы.

Метапредметными результатами изучения курса «Математика» в 1-м классе являются формирование следующих универсальных учебных действий (УУД).

Регулятивные УУД:

- Определять и формулировать цель деятельности на уроке с помощью учителя.

- Проговаривать последовательность действий на уроке.

- Учиться высказывать своё предположение (версию) на основе работы с иллюстрацией учебника.

- Учиться работать по предложенному учителем плану.

Средством формирования этих действий служит технология проблемного диалога на этапе изучения нового материала.

- Учиться отличать верно выполненное задание от неверного.

- Учиться совместно с учителем и другими учениками давать эмоциональную оценку деятельности класса на уроке.

Средством формирования этих действий служит технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

- Ориентироваться в своей системе знаний: отличать новое от уже известного с помощью учителя.

- Делать предварительный отбор источников информации: ориентироваться в учебнике (на развороте, в оглавлении, в словаре).

- Добывать новые знания: находить ответы на вопросы, используя учебник, свой жизненный опыт и информацию, полученную на уроке.

- Перерабатывать полученную информацию: делать выводы в результате совместной работы всего класса.

- Перерабатывать полученную информацию: сравнивать и группировать такие математические объекты, как числа, числовые выражения, равенства, неравенства, плоские геометрические фигуры.

- Преобразовывать информацию из одной формы в другую: составлять математические рассказы и задачи на основе простейших математических моделей (предметных, рисунков, схематических рисунков, схем); находить и формулировать решение задачи с помощью простейших моделей (предметных, рисунков, схематических рисунков, схем).

- Средством формирования этих действий служит учебный материал и задания учебника, ориентированные на линии развития средствами предмета.

Коммуникативные УУД:

- Донести свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне одного предложения или небольшого текста).

- Слушать и понимать речь других.

- Читать и пересказывать текст.

Средством формирования этих действий служит технология проблемного диалога (побуждающий и подводящий диалог).

- Совместно договариваться о правилах общения и поведения в школе и следовать им.

- Учиться выполнять различные роли в группе (лидера, исполнителя, критика).

Средством формирования этих действий служит организация работы в парах и малых группах (в методических рекомендациях даны такие варианты проведения уроков).

Предметными результатами изучения курса «Математика» в 1-м классе являются формирование следующих умений.

1-й уровень (необходимый)

Учащиеся должны уметь использовать при выполнении заданий:

- знание названий и последовательности чисел от 1 до 20; разрядный состав чисел от 11 до 20;

- знание названий и обозначений операций сложения и вычитания;

- использовать знание таблицы сложения однозначных чисел и соответствующих случаев вычитания в пределах 10 (на уровне навыка);

- сравнивать группы предметов с помощью составления пар;

- читать, записывать и сравнивать числа в пределах 20;

- находить значения выражений, содержащих одно действие (сложение или вычитание);

- решать простые задачи:

  1. раскрывающие смысл действий сложения и вычитания;

  2. задачи, при решении которых используются понятия «увеличить на …», «уменьшить на …»;

  3. задачи на разностное сравнение;

- распознавать геометрические фигуры: точку, прямую, луч, кривую незамкнутую, кривую замкнутую, круг, овал, отрезок, ломаную, угол, многоугольник, прямоугольник, квадрат.

2–й уровень (программный)

Учащиеся должны уметь:

- в процессе вычислений осознанно следовать алгоритму сложения и вычитания в пределах 20;

- использовать в речи названия компонентов и результатов действий сложения и вычитания, использовать знание зависимости между ними в процессе поиска решения и при оценке результатов действий;

- использовать в процессе вычислений знание переместительного свойства сложения;

- использовать в процессе измерения знание единиц измерения длины, объёма и массы (сантиметр, дециметр, литр, килограмм);

- выделять как основание классификации такие признаки предметов, как цвет, форма, размер, назначение, материал;

- выделять часть предметов из большей группы на основании общего признака (видовое отличие), объединять группы предметов в большую группу (целое) на основании общего признака (родовое отличие);

- производить классификацию предметов, математических объектов по одному основанию;

- использовать при вычислениях алгоритм нахождения значения выражений без скобок, содержащих два действия (сложение и/или вычитание);

- сравнивать, складывать и вычитать именованные числа;

- решать уравнения вида а ± х = b; х − а = b;

- решать задачи в два действия на сложение и вычитание;

- узнавать и называть плоские геометрические фигуры: треугольник, четырёхугольник, пятиугольник, шестиугольник, многоугольник; выделять из множества четырёхугольников прямоугольники, из множества прямоугольников – квадраты, из множества углов – прямой угол;

- определять длину данного отрезка;

- читать информацию, записанную в таблицу, содержащую не более трёх строк и трёх столбцов;

- заполнять таблицу, содержащую не более трёх строк и трёх столбцов;

- решать арифметические ребусы и числовые головоломки, содержащие не более двух действий.

2-й класс

Личностными результатами изучения предметно-методического курса «Математика» во 2-м классе является формирование следующих умений:

- Самостоятельно определять и высказывать самые простые, общие для всех людей правила поведения при совместной работе и сотрудничестве (этические нормы).

- В предложенных педагогом ситуациях общения и сотрудничества, опираясь на общие для всех простые правила поведения, самостоятельно делать выбор, какой поступок совершить.

- Средством достижения этих результатов служит учебный материал и задания учебника, нацеленные на 2-ю линию развития – умение определять своё отношение к миру.

Метапредметными результатами изучения курса «Математика» во 2-м классе являются формирование следующих универсальных учебных действий.

Регулятивные УУД:

- Определять цель деятельности на уроке с помощью учителя и самостоятельно.

- Учиться совместно с учителем обнаруживать и формулировать учебную проблему совместно с учителем (для этого в учебнике специально предусмотрен ряд уроков).

- Учиться планировать учебную деятельность на уроке.

- Высказывать свою версию, пытаться предлагать способ её проверки (на основе продуктивных заданий в учебнике).

- Работая по предложенному плану, использовать необходимые средства (учебник, простейшие приборы и инструменты).

Средством формирования этих действий служит технология проблемного диалога на этапе изучения нового материала.

- Определять успешность выполнения своего задания в диалоге с учителем.

Средством формирования этих действий служит технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

- Ориентироваться в своей системе знаний: понимать, что нужна дополнительная информация (знания) для решения учебной задачи в один шаг.

- Делать предварительный отбор источников информации для решения учебной задачи.

- Добывать новые знания: находить необходимую информацию как в учебнике, так и в предложенных учителем словарях и энциклопедиях (в учебнике 2-го класса для этого предусмотрена специальная «энциклопедия внутри учебника»).

- Добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.).

- Перерабатывать полученную информацию: наблюдать и делать самостоятельные выводы.

Средством формирования этих действий служит учебный материал и задания учебника, нацеленные на 1-ю линию развития – умение объяснять мир.

Коммуникативные УУД:

- Донести свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне одного предложения или небольшого текста).

- Слушать и понимать речь других.

- Выразительно читать и пересказывать текст.

- Вступать в беседу на уроке и в жизни.

Средством формирования этих действий служит технология проблемного диалога (побуждающий и подводящий диалог) и технология продуктивного чтения.

- Совместно договариваться о правилах общения и поведения в школе и следовать им.

Учиться выполнять различные роли в группе (лидера, исполнителя, критика).

Средством формирования этих действий служит работа в малых группах (в методических рекомендациях дан такой вариант проведения уроков).

Предметными результатами изучения курса «Математика» во 2-м классе являются формирование следующих умений.

1-й уровень (необходимый)

Учащиеся должны уметь:

- использовать при выполнении заданий названия и последовательность чисел от 1 до 100;

- использовать при вычислениях на уровне навыка знание табличных случаев сложения однозначных чисел и соответствующих им случаев вычитания в пределах 20;

- использовать при выполнении арифметических действий названия и обозначения операций умножения и деления;

- использовать при вычислениях на уровне навыка знание табличных случаев умножения однозначных чисел и соответствующих им случаев деления;

- осознанно следовать алгоритму выполнения действий в выражениях со скобками и без них;

- использовать в речи названия единиц измерения длины, массы, объёма: метр, дециметр, сантиметр, килограмм; литр.

- читать, записывать и сравнивать числа в пределах 100;

- осознанно следовать алгоритмам устного и письменного сложения и вычитания чисел в пределах 100;

- решать простые задачи:

  1. раскрывающие смысл действий сложения, вычитания, умножения и деления;

  2. использующие понятия «увеличить в (на)…», «уменьшить в (на)…»;

  3. на разностное и кратное сравнение;

- находить значения выражений, содержащих 2–3 действия (со скобками и без скобок);

- решать уравнения вида а ± х = b; х − а = b;

- измерять длину данного отрезка, чертить отрезок данной длины;

- узнавать и называть плоские углы: прямой, тупой и острый;

- узнавать и называть плоские геометрические фигуры: треугольник, четырёхугольник, пятиугольник, шестиугольник, многоугольник; выделять из множества четырёхугольников прямоугольники, из множества прямоугольников – квадраты;

- различать истинные и ложные высказывания (верные и неверные равенства).

2-й уровень (программный)

Учащиеся должны уметь:

- использовать при решении учебных задач формулы периметра квадрата и прямоугольника;

- пользоваться при измерении и нахождении площадей единицами измерения площади: 1 см², 1 дм².

- выполнять умножение и деление чисел с 0, 1, 10;

- решать уравнения вида а ± х = b; х − а = b; а ∙ х = b; а : х = b; х : а = b;

- находить значения выражений вида а ± 5; 4 − а; а : 2; а ∙ 4; 6 : а при заданных числовых значениях переменной;

- решать задачи в 2–3 действия, основанные на четырёх арифметических операциях;

- находить длину ломаной и периметр многоугольника как сумму длин его сторон;

- использовать знание формул периметра и площади прямоугольника (квадрата) при решении задач;

- чертить квадрат по заданной стороне, прямоугольник по заданным двум сторонам;

- узнавать и называть объёмные фигуры: куб, шар, пирамиду;

- записывать в таблицу данные, содержащиеся в тексте;

- читать информацию, заданную с помощью линейных диаграмм;

- решать арифметические ребусы и числовые головоломки, содержащие два действия (сложение и/или вычитание);

- составлять истинные высказывания (верные равенства и неравенства);

- заполнять магические квадраты размером 3×3;

- находить число перестановок не более чем из трёх элементов;

- находить число пар на множестве из 3–5 элементов (число сочетаний по 2);

- находить число пар, один элемент которых принадлежит одному множеству, а другой – второму множеству;

- проходить числовые лабиринты, содержащие двое-трое ворот;

- объяснять решение задач по перекладыванию одной-двух палочек с заданным условием и решением;

- решать простейшие задачи на разрезание и составление фигур;

- уметь объяснить, как получен результат заданного математического фокуса.

3−4-й классы

Личностными результатами изучения учебно-методического курса «Математика» в 3–4-м классах является формирование следующих умений:

- Самостоятельно определять и высказывать самые простые общие для всех людей правила поведения при общении и сотрудничестве (этические нормы общения и сотрудничества).

- В самостоятельно созданных ситуациях общения и сотрудничества, опираясь на общие для всех простые правила поведения, делать выбор, какой поступок совершить.

Средством достижения этих результатов служит учебный материал и задания учебника, нацеленные на 2-ю линию развития – умение определять свое отношение к миру.

Метапредметными результатами изучения учебно-методического курса «Математика» в 3-ем классе являются формирование следующих универсальных учебных действий.

Регулятивные УУД:

- Самостоятельно формулировать цели урока после предварительного обсуждения.

- Учиться совместно с учителем обнаруживать и формулировать учебную проблему.

- Составлять план решения проблемы (задачи) совместно с учителем.

- Работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки с помощью учителя.

Средством формирования этих действий служит технология проблемного диалога на этапе изучения нового материала.

- В диалоге с учителем учиться вырабатывать критерии оценки и определять степень успешности выполнения своей работы и работы всех, исходя из имеющихся критериев.

Средством формирования этих действий служит технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

- Ориентироваться в своей системе знаний: самостоятельно предполагать, какая информация нужна для решения учебной задачи в один шаг.

- Отбирать необходимые для решения учебной задачи источники информации среди предложенных учителем словарей, энциклопедий, справочников.

- Добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.).

- Перерабатывать полученную информацию: сравнивать и группировать факты и явления; определять причины явлений, событий.

- Перерабатывать полученную информацию: делать выводы на основе обобщения знаний.

- Преобразовывать информацию из одной формы в другую: составлять простой план учебно-научного текста.

- Преобразовывать информацию из одной формы в другую: представлять информацию в виде текста, таблицы, схемы.

Средством формирования этих действий служит учебный материал и задания учебника, нацеленные на 1-ю линию развития – умение объяснять мир.

Коммуникативные УУД:

- Донести свою позицию до других: оформлять свои мысли в устной и письменной речи с учётом своих учебных и жизненных речевых ситуаций.

- Донести свою позицию до других: высказывать свою точку зрения и пытаться её обосновать, приводя аргументы.

- Слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения.

Средством формирования этих действий служит технология проблемного диалога (побуждающий и подводящий диалог).

- Читать вслух и про себя тексты учебников и при этом: вести «диалог с автором» (прогнозировать будущее чтение; ставить вопросы к тексту и искать ответы; проверять себя); отделять новое от известного; выделять главное; составлять план.

Средством формирования этих действий служит технология продуктивного чтения.

- Договариваться с людьми: выполняя различные роли в группе, сотрудничать в совместном решении проблемы (задачи).

- Учиться уважительно относиться к позиции другого, пытаться договариваться.

Средством формирования этих действий служит работа в малых группах.

Предметными результатами изучения курса «Математика» в 3-м классе являются формирование следующих умений.

1-й уровень (необходимый)

Учащиеся должны уметь:

- использовать при решении учебных задач названия и последовательность чисел в пределах 1000 (с какого числа начинается натуральный ряд чисел, как образуется каждое следующее число в этом ряду);

- объяснять, как образуется каждая следующая счётная единица;

- использовать при решении учебных задач единицы измерения длины (мм, см, дм, м, км), объёма (литр, см³, дм³, м³), массы (кг, центнер), площади (см², дм², м²), времени (секунда, минута, час, сутки, неделя, месяц, год, век) и соотношение между единицами измерения каждой из величин;

- использовать при решении учебных задач формулы площади и периметра прямоугольника (квадрата);

- пользоваться для объяснения и обоснования своих действий изученной математической терминологией;

- читать, записывать и сравнивать числа в пределах 1000;

- представлять любое трёхзначное число в виде суммы разрядных слагаемых;

- выполнять устно умножение и деление чисел в пределах 100 (в том числе и деление с остатком);

- выполнять умножение и деление с 0; 1; 10; 100;

- осознанно следовать алгоритмам устных вычислений при сложении, вычитании, умножении и делении трёхзначных чисел, сводимых к вычислениям в пределах 100, и алгоритмам письменных вычислений при сложении, вычитании, умножении и делении чисел в остальных случаях;

- осознанно следовать алгоритмам проверки вычислений;

- использовать при вычислениях и решениях различных задач распределительное свойство умножения и деления относительно суммы (умножение и деление суммы на число), сочетательное свойство умножения для рационализации вычислений;

- читать числовые и буквенные выражения, содержащие не более двух действий с использованием названий компонентов;

- решать задачи в 1–2 действия на все арифметические действия арифметическим способом (с опорой на схемы, таблицы, краткие записи и другие модели);

- находить значения выражений в 2–4 действия;

- использовать знание соответствующих формул площади и периметра прямоугольника (квадрата) при решении различных задач;

- использовать знание зависимости между компонентами и результатами действий при решении уравнений вида а ± х = b; а ∙ х = b; а : х = b;

- строить на клетчатой бумаге прямоугольник и квадрат по заданным длинам сторон;

- сравнивать величины по их числовым значениям; выражать данные величины в изученных единицах измерения;

- определять время по часам с точностью до минуты;

- сравнивать и упорядочивать объекты по разным признакам: длине, массе, объёму;

- устанавливать зависимость между величинами, характеризующими процессы: движения (пройденный путь, время, скорость), купли – продажи (количество товара, его цена и стоимость).

2-й уровень (программный)

Учащиеся должны уметь:

  • использовать при решении различных задач знание формулы объёма прямоугольного параллелепипеда (куба);

  • использовать при решении различных задач знание формулы пути;

  • использовать при решении различных задач знание о количестве, названиях и последовательности дней недели, месяцев в году;

  • находить долю от числа, число по доле;

  • решать задачи в 2–3 действия на все арифметические действия арифметическим способом (с опорой на схемы, таблицы, краткие записи и другие модели);

  • находить значения выражений вида а ± b; а ∙ b; а : b при заданных значениях переменных;

  • решать способом подбора неравенства с одной переменной вида: а ± х < b; а ∙ х > b.

  • использовать знание зависимости между компонентами и результатами действий при решении уравнений вида: х ± а = с ± b; а − х = с ± b; х ± a = с ∙ b; а − х = с : b; х : а = с ± b;

  • использовать заданные уравнения при решении текстовых задач;

  • вычислять объём параллелепипеда (куба);

  • вычислять площадь и периметр составленных из прямоугольников фигур;

  • выделять из множества треугольников прямоугольный и тупоугольный, равнобедренный и равносторонний треугольники;

  • строить окружность по заданному радиусу;

  • выделять из множества геометрических фигур плоские и объёмные фигуры;

  • узнавать и называть объёмные фигуры: параллелепипед, шар, конус, пирамиду, цилиндр;

  • выделять из множества параллелепипедов куб;

  • решать арифметические ребусы и числовые головоломки, содержащие четыре арифметических действия (сложение, вычитание, умножение, деление);

  • устанавливать принадлежность или непринадлежность множеству данных элементов;

  • различать истинные и ложные высказывания с кванторами общности и существования;

  • читать информацию, заданную с помощью столбчатых, линейных диаграмм, таблиц, графов;

  • строить несложные линейные и столбчатые диаграммы по заданной в таблице информации;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;

  • выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;

  • правильно употреблять термины «чаще», «реже», «случайно», «возможно», «невозможно» при формулировании различных высказываний;

  • составлять алгоритмы решения простейших задач на переливания;

  • составлять алгоритм поиска одной фальшивой монеты на чашечных весах без гирь (при количестве монет не более девяти);

  • устанавливать, является ли данная кривая уникурсальной, и обводить её.

Предметными результатами изучения курса «Математика» в 4-м классе являются формирование следующих умений.

1-й уровень (необходимый)

Учащиеся должны уметь:

  • использовать при решении различных задач название и последовательность чисел в натуральном ряду в пределах 1000000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);

  • объяснять, как образуется каждая следующая счётная единица;

  • использовать при решении различных задач названия и последовательность разрядов в записи числа;

  • использовать при решении различных задач названия и последовательность первых трёх классов;

  • рассказывать, сколько разрядов содержится в каждом классе;

  • объяснять соотношение между разрядами;

  • использовать при решении различных задач и обосновании своих действий знание о количестве разрядов, содержащихся в каждом классе;

  • использовать при решении различных задач и обосновании своих действий знание о том, сколько единиц каждого класса содержится в записи числа;

  • использовать при решении различных задач и обосновании своих действий знание о позиционности десятичной системы счисления;

  • использовать при решении различных задач знание о единицах измерения величин (длина, масса, время, площадь), соотношении между ними;

  • использовать при решении различных задач знание о функциональной связи между величинами (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа);

  • выполнять устные вычисления (в пределах 1000000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях, выполнять проверку правильности вычислений;

  • выполнять умножение и деление с 1000;

  • решать простые и составные задачи, раскрывающие смысл арифметических действий, отношения между числами и зависимость между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа);

  • решать задачи, связанные с движением двух объектов: навстречу и в противоположных направлениях;

  • решать задачи в 2–3 действия на все арифметические действия арифметическим способом (с опорой на схемы, таблицы, краткие записи и другие модели);

  • осознанно создавать алгоритмы вычисления значений числовых выражений, содержащих до 3−4 действий (со скобками и без них), на основе знания правила о порядке выполнения действий и знания свойств арифметических действий и следовать этим алгоритмам, включая анализ и проверку своих действий;

  • прочитать записанное с помощью букв простейшее выражение (сумму, разность, произведение, частное), когда один из компонентов действия остаётся постоянным и когда оба компонента являются переменными;

  • осознанно пользоваться алгоритмом нахождения значения выражений с одной переменной при заданном значении переменных;

  • использовать знание зависимости между компонентами и результатами действий сложения, вычитания, умножения, деления при решении уравнений вида: a ± x = b; x − a = b; a ∙ x = b; a : x = b; x : a = b;

  • уметь сравнивать значения выражений, содержащих одно действие; понимать и объяснять, как изменяется результат сложения, вычитания, умножения и деления в зависимости от изменения одной из компонент.

  • вычислять объём параллелепипеда (куба);

  • вычислять площадь и периметр фигур, составленных из прямоугольников;

  • выделять из множества треугольников прямоугольный и тупоугольный, равнобедренный и равносторонний треугольники;

  • строить окружность по заданному радиусу;

  • выделять из множества геометрических фигур плоские и объёмные фигуры;

  • распознавать геометрические фигуры: точка, линия (прямая, кривая), отрезок, луч, ломаная, многоугольник и его элементы (вершины, стороны, углы), в том числе треугольник, прямоугольник (квадрат), угол, круг, окружность (центр, радиус), параллелепипед (куб) и его элементы (вершины, ребра, грани), пирамиду, шар, конус, цилиндр;

  • находить среднее арифметическое двух чисел.

2-й уровень (программный)

Учащиеся должны уметь:

  • использовать при решении различных задач и обосновании своих действий знание о названии и последовательности чисел в пределах 1000000000.

  • Учащиеся должны иметь представление о том, как читать, записывать и сравнивать числа в пределах 1000000000;

Учащиеся должны уметь:

  • выполнять прикидку результатов арифметических действий при решении практических и предметных задач;

  • осознанно создавать алгоритмы вычисления значений числовых выражений, содержащих до 6 действий (со скобками и без них), на основе знания правила о порядке выполнения действий и знания свойств арифметических действий и следовать этим алгоритмам, включая анализ и проверку своих действий;

  • находить часть от числа, число по его части, узнавать, какую часть одно число составляет от другого;

  • иметь представление о решении задач на части;

  • понимать и объяснять решение задач, связанных с движением двух объектов: вдогонку и с отставанием;

  • читать и строить вспомогательные модели к составным задачам;

  • распознавать плоские геометрические фигуры при изменении их положения на плоскости;

  • распознавать объёмные тела – параллелепипед (куб), пирамида, конус, цилиндр – при изменении их положения в пространстве;

  • находить объём фигур, составленных из кубов и параллелепипедов;

  • использовать заданные уравнения при решении текстовых задач;

  • решать уравнения, в которых зависимость между компонентами и результатом действия необходимо применить несколько раз: а ∙ х ± b = с; (х ± b) : с = d; a ± x ± b = с и др.;

  • читать информацию, записанную с помощью круговых диаграмм;

  • решать простейшие задачи на принцип Дирихле;

  • находить вероятности простейших случайных событий;

  • находить среднее арифметическое нескольких чисел.


Содержание учебного предмета « Математика».

Числа и величины Счёт предметов. Чтение и запись чисел от нуля до миллиона. Классы и разряды. Представление многозначных чисел в виде суммы разрядных слагаемых. Сравнение и упорядочение чисел, знаки сравнения. Измерение величин; сравнение и упорядочение величин. Единицы массы (грамм, килограмм, центнер, тонна), вместимости (литр), времени (секунда, минута, час). Соотношения между единицами измерения однородных величин. Сравнение и упорядочение однородных величин. Доля величины (половина, треть, четверть, десятая, сотая, тысячная).

Арифметические действия

Сложение, вычитание, умножение и деление. Названия компонентов арифметических действий, знаки действий. Таблица сложения. Таблица умножения. Связь между сложением, вычитанием, умножением и делением. Нахождение неизвестного компонента арифметического действия. Деление с остатком.

Числовое выражение. Установление порядка выполнения действий в числовых выражениях со скобками и без скобок. Нахождение значения числового выражения. Использование свойств арифметических действий в вычислениях (перестановка и группировка слагаемых в сумме, множителей в произведении; умножение суммы и разности на число).

Алгоритмы письменного сложения, вычитания, умножения и деления многозначных чисел.

Способы проверки правильности вычислений (алгоритм, обратное действие, оценка достоверности, прикидки результата, вычисление на калькуляторе).

Работа с текстовыми задачами

Решение текстовых задач арифметическим способом. Задачи, содержащие отношения «больше (меньше) на…», «больше (меньше) в…». Зависимости между величинами, характеризующими процессы движения, работы, куплипродажи и др. Скорость, время, путь; объём работы, время, производительность труда; количество товара, его цена и стоимость и др. Планирование хода решения задачи. Представление текста задачи (схема, таблица, диаграмма и другие модели).

Задачи на нахождение доли целого и целого по его доле.

Пространственные отношения. Геометрические фигуры

Взаимное расположение предметов в пространстве и на плоскости (выше—ниже, слева—справа, сверху—снизу, ближе—дальше, между и пр.). Распознавание и изображениегеометрических фигур: точка, линия (кривая, прямая), отрезок, ломаная, угол, многоугольник, треугольник, прямоугольник, квадрат, окружность, круг. Использование чертёжных инструментов для выполнения построений. Геометрические формы в окружающем мире. Распознавание и называние: куб, шар, параллелепипед, пирамида, цилиндр, конус.

Геометрические величины

Геометрические величины и их измерение. Измерение длины отрезка. Единицы длины (мм, см, дм, м, км). Периметр. Вычисление периметра многоугольника.

Площадь геометрической фигуры. Единицы площади (см2, дм2, м2). Точное и приближённое измерение площади геометрической фигуры. Вычисление площади прямоугольника.

1 класс (4 часа в неделю, всего – 132 ч)

Общие понятия.

Признаки предметов.

Свойства (признаки) предметов: цвет, форма, размер, назначение, материал, общее название.

Выделение предметов из группы по заданным свойствам, сравнение предметов, разбиение предметов на группы (классы) в соответствии с указанными свойствами.

Отношения.

Сравнение групп предметов. Графы и их применение. Равно, не равно, столько же.

Числа и операции над ними.

Числа от 1 до 10.

Числа от 1 до 9. Натуральное число как результат счёта и мера величины. Реальные и идеальные модели понятия «однозначное число». Арабские и римские цифры.

Состав чисел от 2 до 9. Сравнение чисел, запись отношений между числами. Числовые равенства, неравенства. Последовательность чисел. Получение числа прибавлением 1 к предыдущему числу, вычитанием 1 из числа, непосредственно следующего за ним при счёте.

Ноль. Число 10. Состав числа 10.

Числа от 1 до 20.

Устная и письменная нумерация чисел от 1 до 20. Десяток. Образование и название чисел от 1 до 20. Модели чисел.

Чтение и запись чисел. Разряд десятков и разряд единиц, их место в записи чисел.

Сравнение чисел, их последовательность. Представление числа в виде суммы разрядных слагаемых.

Сложение и вычитание в пределах десяти.

Объединение групп предметов в целое (сложение). Удаление группы предметов (части) из целого (вычитание). Связь между сложением и вычитанием на основании представлений о целом и частях. Соотношение целого и частей.

Сложение и вычитание чисел в пределах 10. Компоненты сложения и вычитания. Изменение результатов сложения и вычитания в зависимости от изменения компонент. Взаимосвязь операций сложения и вычитания.

Переместительное свойство сложения. Приёмы сложения и вычитания.

Табличные случаи сложения однозначных чисел. Соответствующие случаи вычитания.

Понятия «увеличить на …», «уменьшить на …», «больше на …», «меньше на …».

Сложение и вычитание чисел в пределах 20.

Алгоритмы сложения и вычитания однозначных чисел с переходом через разряд. Табличные случаи сложения и вычитания чисел в пределах 20. (Состав чисел от 11 до 19.)

Величины и их измерение.

Величины: длина, масса, объём и их измерение. Общие свойства величин.

Единицы измерения величин: сантиметр, дециметр, килограмм, литр. Сравнение, сложение и вычитание именованных чисел. Аналогия десятичной системы мер длины (1 см, 1 дм) и десятичной системы записи двузначных чисел.

Текстовые задачи.

Задача, её структура. Простые и составные текстовые задачи:

  1. раскрывающие смысл действий сложения и вычитания;

  2. задачи, при решении которых используются понятия «увеличить на …», «уменьшить на …»;

  3. задачи на разностное сравнение.

Элементы геометрии.

Ориентация в пространстве и на плоскости: «над», «под», «выше», «ниже», «между», «слева», «справа», «посередине» и др. Точка. Линии: прямая, кривая незамкнутая, кривая замкнутая. Луч. Отрезок. Ломаная. Углы: прямые и непрямые. Многоугольники как замкнутые ломаные: треугольник, четырёхугольник, прямоугольник, квадрат. Круг, овал. Модели простейших геометрических фигур.

Различные виды классификаций геометрических фигур.

Вычисление длины ломаной как суммы длин её звеньев.

Вычисление суммы длин сторон прямоугольника и квадрата без использования термина «периметр».

Элементы алгебры.

Равенства, неравенства, знаки «=», «>»; «<». Числовые выражения. Чтение, запись, нахождение значений выражений. Порядок выполнения действий в выражениях, содержащих два и более действий. Сравнение значений выражений вида а + 5 и а + 6; а − 5 и а − 6. Равенство и неравенство.

Уравнения вида а ± х = b; х − а = b.

Элементы стохастики.

Таблицы. Строки и столбцы. Начальные представления о графах. Понятие о взаимно однозначном соответствии.

Задачи на расположение и выбор (перестановку) предметов.

Занимательные и нестандартные задачи.

Числовые головоломки, арифметические ребусы. Логические задачи на поиск закономерности и классификацию.

Арифметические лабиринты, математические фокусы. Задачи на разрезание и составление фигур. Задачи с палочками.

Итоговое повторение.


2 класс (4 часа в неделю, всего – 136 ч)

Числа и операции над ними.

Числа от 1 до 100.

Десяток. Счёт десятками. Образование и название двузначных чисел. Модели двузначных чисел. Чтение и запись чисел. Сравнение двузначных чисел, их последовательность. Представление двузначного числа в виде суммы разрядных слагаемых.

Устная и письменная нумерация двузначных чисел. Разряд десятков и разряд единиц, их место в записи чисел.

Сложение и вычитание чисел.

Операции сложения и вычитания. Взаимосвязь операций сложения и вычитания.

Прямая и обратная операция.

Изменение результатов сложения и вычитания в зависимости от изменения компонент. Свойства сложения и вычитания. Приёмы рациональных вычислений.

Сложение и вычитание двузначных чисел, оканчивающихся нулями.

Устные и письменные приёмы сложения и вычитания чисел в пределах 100.

Алгоритмы сложения и вычитания.

Умножение и деление чисел.

Нахождение суммы нескольких одинаковых слагаемых и представление числа в виде суммы одинаковых слагаемых. Операция умножения. Переместительное свойство умножения.

Операция деления. Взаимосвязь операций умножения и деления. Таблица умножения и деления однозначных чисел.

Частные случаи умножения и деления с 0 и 1. Невозможность деления на 0. Понятия «увеличить в …», «уменьшить в …», «больше в …», «меньше в …». Умножение и деление чисел на 10. Линейные и разветвляющиеся алгоритмы. Задание алгоритмов словесно и с помощью блок-схем.

Величины и их измерение.

Длина. Единица измерения длины – метр. Соотношения между единицами измерения длины.

Перевод именованных чисел в заданные единицы (раздробление и превращение).

Сравнение, сложение и вычитание именованных чисел. Умножение и деление именованных чисел на отвлеченное число.

Периметр многоугольника. Формулы периметра квадрата и прямоугольника.

Представление о площади фигуры и её измерение. Площадь прямоугольника и квадрата. Единицы площади: см², дм².

Цена, количество и стоимость товара.

Время. Единица времени – час.

Текстовые задачи.

Простые и составные текстовые задачи, при решении которых используется:

  1. смысл действий сложения, вычитания, умножения и деления;

  2. понятия «увеличить в (на)…»; «уменьшить в (на)…»;

  3. разностное и кратное сравнение;

  4. прямая и обратная пропорциональность.

Моделирование задач. Задачи с альтернативным условием.

Элементы геометрии.

Плоскость. Плоские и объёмные фигуры. Обозначение геометрических фигур буквами.

Острые и тупые углы.

Составление плоских фигур из частей. Деление плоских фигур на части.

Окружность. Круг. Вычерчивание окружностей с помощью циркуля и вырезание кругов. Радиус окружности.

Элементы алгебры.

Переменная. Выражения с переменной. Нахождение значений выражений вида а ± 5; 4 − а; а : 2; а ∙ 4; 6 : а при заданных числовых значениях переменной. Сравнение значений выражений вида а ∙ 2 и а ∙ 3; а : 2 и а : 3.

Использование скобок для обозначения последовательности действий. Порядок действий в выражениях, содержащих два и более действия со скобками и без них.

Решение уравнений вида а ± х = b; х − а = b; а − х = b; а : х = b; х : а = b.

Элементы стохастики.

Решение комбинаторных задач с помощью таблиц и графов. Чтение информации, заданной с помощью линейных диаграмм.

Первоначальные представления о сборе и накоплении данных. Запись данных, содержащихся в тексте, в таблицу.

Понятие о случайном эксперименте. Понятия «чаще», «реже», «возможно», «невозможно», «случайно».

Занимательные и нестандартные задачи.

Высказывания. Истинные и ложные высказывания. Логические задачи. Арифметические лабиринты, магические фигуры, математические фокусы.

Задачи на разрезание и составление фигур. Задачи с палочками.

Уникурсальные кривые.

Итоговое повторение.


3-й класс (4 часа в неделю, всего – 136 ч)

Числа и операции над ними.

Числа от 1 до 1000.

Сотня. Счёт сотнями. Тысяча. Трёхзначные числа. Разряд сотен, десятков, единиц. Разрядные слагаемые. Чтение и запись трёхзначных чисел. Последовательность чисел. Сравнение чисел.

Дробные числа.

Доли. Сравнение долей, нахождение доли числа. Нахождение числа по доле.

Сложение и вычитание чисел.

Операции сложения и вычитания над числами в пределах 1 000. Устное сложение и вычитание чисел в случаях, сводимых к действиям в пределах 100. Письменные приёмы сложения и вычитания трёхзначных чисел.

Умножение и деление чисел в пределах 100.

Операции умножения и деления над числами в пределах 100. Распределительное свойство умножения и деления относительно суммы (умножение и деление суммы на число). Сочетательное свойство умножения. Использование свойств умножения и деления для рационализации вычислений. Внетабличное умножение и деление. Деление с остатком. Проверка деления с остатком. Изменение результатов умножения и деления в зависимости от изменения компонент. Операции умножения и деления над числами в пределах 1000. Устное умножение и деление чисел в случаях, сводимых к действиям в пределах 100; умножение и деление на 100. Письменные приёмы умножения трёхзначного числа на однозначное. Запись умножения «в столбик». Письменные приёмы деления трёхзначных чисел на однозначное. Запись деления «уголком».

Величины и их измерение.

Объём. Единицы объёма: 1 см³, 1 дм³, 1 м³. Соотношения между единицами измерения объема. Формулы объема прямоугольного параллелепипеда (куба).

Время. Единицы измерения времени: секунда, минута, час, сутки, неделя, месяц, год. Соотношения между единицами измерения времени. Календарь.

Длина. Единицы длины: 1 мм, 1 км. Соотношения между единицами измерения длины.

Масса. Единица измерения массы: центнер. Соотношения между единицами измерения массы.

Скорость, расстояние. Зависимость между величинами: скорость, время, расстояние.

Текстовые задачи.

Решение простых и составных текстовых задач.

Пропедевтика функциональной зависимости при решении задач с пропорциональными величинами. Решение простых задач на движение. Моделирование задач.

Задачи с альтернативным условием.

Элементы геометрии.

Куб, прямоугольный параллелепипед. Их элементы. Отпечатки объёмных фигур на плоскости.

Виды треугольников: прямоугольный, остроугольный, тупоугольный; равносторонний, равнобедренный, разносторонний.

Изменение положения плоских фигур на плоскости.

Элементы алгебры.

Выражения с двумя переменными. Нахождение значений выражений вида а ± b; а ∙ b; а : b.

Неравенства с одной переменной. Решение подбором неравенств с одной переменной вида: а ± х < b; а ± х > b.

Решение уравнений вида: х ± а = с ± b; а − х = с ± b; х ± a = с ∙ b; а − х = с : b; х : а = с ± b; а ∙ х = с ± b; а : х = с ∙ b и т.д.

Прямая пропорциональность. Обратная пропорциональность.

Использование уравнений при решении текстовых задач.

Элементы стохастики.

Решение комбинаторных задач с помощью таблиц и графов. Упорядоченный перебор вариантов. Дерево выбора.

Случайные эксперименты. Запись результатов случайного эксперимента. Понятие о частоте события в серии одинаковых случайных экспериментов.

Понятия «чаще», «реже», «невозможно», «возможно», «случайно».

Первоначальное представление о сборе и обработке статистической информации.

Чтение информации, заданной с помощью линейных и столбчатых диаграмм, таблиц, графов. Построение простейших линейных диаграмм по содержащейся в таблице информации.

Круговые диаграммы.

Занимательные и нестандартные задачи.

Уникурсальные кривые.

Логические задачи. Решение логических задач с помощью таблиц и графов.

Множество, элемент множества, подмножество, пересечение множеств, объединение множеств, высказывания с кванторами общности и существования.

Затруднительные положения: задачи на переправы, переливания, взвешивания.

Задачи на принцип Дирихле.

Итоговое повторение.

4 класс (4 часа в неделю, всего – 136 ч)

Числа и операции над ними.

Дробные числа.

Дроби. Сравнение дробей. Нахождение части числа. Нахождение числа по его части.

Какую часть одно число составляет от другого.

Сложение дробей с одинаковыми знаменателями. Вычитание дробей с одинаковыми знаменателями.

Числа от 1 до 1000000.

Числа от 1 до 1000000. Чтение и запись чисел. Класс единиц и класс тысяч. I, II, III разряды в классе единиц и в классе тысяч. Представление числа в виде суммы его разрядных слагаемых. Сравнение чисел.

Числа от 1 до 1000000000.

Устная и письменная нумерация многозначных чисел.

Числовой луч. Движение по числовому лучу. Расположение на числовом луче точек с заданными координатами, определение координат заданных точек.

Точные и приближенные значения величин. Округление чисел, использование округления в практической деятельности.

Сложение и вычитание чисел.

Операции сложения и вычитания над числами в пределах от 1 до 1 000 000. Приёмы рациональных вычислений.

Умножение и деление чисел.

Умножение и деление чисел на 10, 100, 1000.

Умножение и деление чисел, оканчивающихся нулями. Устное умножение и деление чисел на однозначное число в случаях, сводимых к действиям в пределах 100.

Письменное умножение и деление на однозначное число.

Умножение и деление на двузначное и трёхзначное число.

Величины и их измерение.

Оценка площади. Приближённое вычисление площадей. Площади составных фигур. Новые единицы площади: мм², км², гектар, ар (сотка). Площадь прямоугольного треугольника.

Работа, производительность труда, время работы.

Функциональные зависимости между группами величин: скорость, время, расстояние; цена, количество, стоимость; производительность труда, время работы, работа. Формулы, выражающие эти зависимости.

Текстовые задачи.

Одновременное движение по числовому лучу. Встречное движение и движение в противоположном направлении. Движение вдогонку. Движение с отставанием. Задачи с альтернативным условием.

Элементы геометрии.

Изменение положения объемных фигур в пространстве.

Объёмные фигуры, составленные из кубов и параллелепипедов.

Прямоугольная система координат на плоскости. Соответствие между точками на плоскости и упорядоченными парами чисел.

Элементы алгебры.

Вычисление значений числовых выражений, содержащих до шести действий (со скобками и без них), на основе знания правила о порядке выполнения действий и знания свойств арифметических действий. Использование уравнений при решении текстовых задач.

Элементы стохастики.

Сбор и обработка статистической информации о явлениях окружающей действительности. Опросы общественного мнения как сбор и обработка статистической информации.

Понятие о вероятности случайного события.

Стохастические игры. Справедливые и несправедливые игры.

Понятие среднего арифметического нескольких чисел. Задачи на нахождение среднего арифметического.

Круговые диаграммы. Чтение информации, содержащейся в круговой диаграмме.

Занимательные и нестандартные задачи.

Принцип Дирихле( от противного).

Математические игры.

Итоговое повторение.

Тематическое планирование.


Содержание

Количество часов

Количество контрольных работ

Количество проектных работ

1 класс

Признаки предметов

6

1


Отношения

4

-


Числа от 1 до 10

33

7


Текстовые задачи

14

1


Величины и их измерения

13

2


Текстовые задачи

14

1


Уравнения

4



Величины и их измерения

13



Числа от 1 до 20

19

2


Повторение

12



2 класс

Повторение изученного в 1 классе

6

1


Сложение и вычитание в пределах 20

23

2


Числа от 1 до 100

7

1


Сложение и вычитание в пределах 100

33

3


Умножение и деление

58

4


Повторение изученного во 2 классе

9

2+1(комплексная)


3 класс

Числа от 1 до 100

Повторение изученного во 2 классе

10

1


Внетабличное умножение и деление

26

1


Доли

12

1


Нумерация многозначных чисел

10

1


Сложение и вычитание в пределах 1000

24

1


Умножение и деление в пределах 1000

21

1


Арифметические действия над числами в пределах 1000

21

1


Повторение изученного в 3 классе

12

2


4 класс

Повторение изученного в 3 классе

8

-


Дроби

17

-

1

Нумерация многозначных чисел

11

1

1

Величины

12

-

-

Сложение и вычитание многозначных чисел

8

-

-

Умножение и деление многозначных чисел

72

5

3

Повторение изученного в 4 классе


8

-

-

Учебно-методическое и материально-техническое обеспечение образовательного процесса.

Материально-техническое обеспечение образовательного процесса, осуществляемого по курсу «Математика»

Для реализации целей и задач обучения математике по данной программе используется УМК «Школа 2100» по математике издательства «Баласс».

Книгопечатная продукция

  1. Стандарт основного общего образования по образовательной области « Математика».

  2. Примерная программа основного общего образования по математике.

  3. Методические пособия (рекомендации к проведению уроков).

  4. Учебно-методические комплекты к программе по математике

. Обучение математике обеспечивается учебниками и пособиями:

1 класс

Демидова Т.Е. Козлова С.А. Тонких А.П. учебник «Математика» М. ,«БАЛАСС

Козлова С.А. Рубин А.Г. «Самостоятельные и контрольные работы к учебнику «Математика» М. ,«БАЛАСС»

Козлова С.А. Гераскин В.Н. Кузнецова И.В. «Дидактический материал» М. ,«БАЛАСС

2 класс

Демидова Т.Е. Козлова С.А. Тонких А.П. учебник «Математика» М. ,«БАЛАСС»

Козлова С. А Рубин А. Г. Контрольные работы по курсу « Математика» и по курсу «Математика и информатика» М. ,«БАЛАСС»

Козлова С.А. Гераскин В.Н. Кузнецова И.В. «Дидактический материал» М. ,«БАЛАСС»

3 класс

Демидова Т.Е. Козлова С.А. Тонких А.П. учебник «Математика» М. ,«БАЛАСС»

Козлова С. А Рубин А. Г. Контрольные работы по курсу « Математика» и по курсу « Математика и информатика» М. ,«БАЛАСС»

Козлова С.А. Гераскин В.Н. Волкова Л. А. «Дидактический материал» М. ,«БАЛАСС»

4 класс

Демидова Т.Е. Козлова С.А. Тонких А.П. учебник «Математика» М. ,«БАЛАСС»

Козлова С. А Рубин А. Г. Контрольные работы по курсу « Математика» и по курсу « Математика и информатика» М. ,«БАЛАСС»

Козлова С.А. Гераськин В.Н. А. Г. Рубин, Е. А. Самойлова «Дидактический материал» М. ,«БАЛАСС»

Компьютерные и информационно-коммуникативные средства


  1. Единая коллекция - http://collection.cross-edu.ru/catalog/rubr/f544b3b7-f1f4-5b76-f453-552f31d9b164.

  2. Российский общеобразовательный портал - http://.edu.ru/.

  3. Детские электронные книги и презентации - http://viki.rdf.ru/.

  4. http://school-collection.edu.ru/

Технические средства обучения


  1. Компьютер.

  2. Интерактивная доска.

  3. Проектор.

  4. Документкамера.

  5. Комплект ноутбуков для учащихся (ПКУ).

  6. Электронная система голосования


Виды и формы контроля.

Виды контроля:
Основная цель контроля знаний и умений состоит в обнаружении
 достижений, успехов обучающихся, в указании путей совершенствования, углубления знаний, умений, с тем, чтобы создавались условия для последующего включения обучающихся в активную творческую деятельность. Эта цель в первую очередь связана с определением качества усвоения  учебного материала – уровня овладения знаниями, умениями и навыками предусмотренных программой по предмету. Во-вторых, конкретизация основной цели контроля связана с обучением обучающихся  приемам взаимоконтроля и самоконтроля, формированием потребности в самоконтроле и взаимоконтроле. В-третьих, эта цель предполагает воспитание таких качеств личности, как ответственность за выполненную работу, проявление инициативы. 

Предварительный контроль знаний выявляет состояние познавательной деятельности обучающихся, в первую очередь - индивидуального уровня каждого ученика .Успех изучения любой темы (раздела или курса) зависит от степени усвоения тех понятий, терминов, положений и т.д., которые изучались на предшествующих этапах обучения. Если информации об этом у педагога нет, то он лишен возможности проектирования и управления в учебном процессе, выбора оптимального его варианта. Необходимую информацию педагог получает, применяя пропедевтическое диагностирование, более известное как предварительный контроль знаний.

Текущий контроль знаний может иметь следующие виды: устный опрос; проверка выполнения письменных домашних заданий, контрольные работы, тестирование, в т.ч. компьютерное, контроль самостоятельной работы (в письменной или устной форме), семинарские занятия, Интернет-тестирование. Виды и сроки проведения текущего контроля знаний обучающихся устанавливаются используемой программой учебной дисциплины, календарно-тематическим планированием.

Тематический контроль знаний предполагает контроль за уровнем знаний обучающихся по определенным темам и устанавливается используемой программой учебной дисциплины, календарно-тематическим планированием.

Промежуточный контроль знаний проводится с целью определения соответствия уровня и качества подготовки обучающихся ФГОС и оценивает результаты учебной деятельности обучающихся за каждый раздел. Основными формами промежуточного контроля знаний являются устный зачет, контрольная работа. Промежуточный контроль осуществляется в форме тестов и контрольных работ, представленных в рабочих тетрадях для обучающихся «Проверочные и контрольные работы по математике» (вар. 1 - 4) для 2, 3, 4-го классов)

Итоговый контроль знаний предполагает контроль за уровнем знаний в конце учебного года. Может быть итоговая комплексная контрольная работа в 1,4 классах по текстам Департамента образования Костромской области, 2, 3класс в рабочих тетрадях для обучающихся «Проверочные и контрольные работы по математике», итоговое тестирование.

Итоговый контроль осуществляется в форме комплексной контрольной работы за курс обучения в 1-4 классе (1, 4 класс по текстам Департамента образования Костромской области, 2, 3 класс см. Приложение к РП).

Формы контроля:

Устный контроль: фронтальный опрос, направленный на диагностику теоретических знаний; индивидуальный опрос; собеседование по теме.

Письменный контроль: математический диктант, самостоятельная работа, тематическая проверочная работа, контрольная работа, тестовый контроль (письменный)

Самоконтроль (умения самостоятельно находить допущенные ошибки, неточности, намечать способы устранения обнаруживаемых пробелов).

















































Приложение

Контрольно-оценочные средства.

Критерии оценивания учащихся по математике

Знания, умения и навыки учащихся по математике оцениваются по результатам устного опроса, текущих и итоговых письменных работ, тестов.

Письменная проверка знаний, умений и навыков.
В основе данного оценивания лежат следующие показатели: правильность выполнения и объем выполненного задания.
Классификация ошибок и недочетов, влияющих на снижение оценки.
Ошибки :
- незнание или неправильное применение свойств, правил, алгоритмов, существующих зависимостей, лежащих в основе выполнения задания или используемых в ходе его выполнения;
- неправильный выбор действий, операций;
- неверные вычисления в случае, когда цель задания - проверка вычислительных умений и навыков;
- пропуск части математических выкладок, действий, операций, существенно влияющих на получение правильного ответа;
- несоответствие пояснительного текста, ответа задания, наименования величин выполненным действиям и полученным результатам;
- несоответствие выполненных измерений и геометрических построений заданным параметрам.
 
Недочеты:
- неправильное списывание данных (чисел, знаков, обозначений, величин);
- ошибки в записях математических терминов, символов при оформлении математических выкладок;
 
- отсутствие ответа к заданию или ошибки в записи ответа.
Снижение отметки за общее впечатление от работы допускается в случаях, указанных выше.
При оценке работ, включающих в себя проверку вычислительных навыков, ставятся следующие оценки:
Оценка "5" ставится, если работа выполнена безошибочно;
Оценка "4" ставится, если в работе допущены 1-2 ошибка и 1-2 недочета;
Оценка "3" ставится, если в работе допущены 3-4 ошибки и 1-2 недочета; 
Оценка "2" ставится, если в работе допущено 5 и более ошибок;
При оценке работ, состоящих только из задач:
Оценка "5" ставится, если задачи решены без ошибок;
Оценка "4" ставится, если допущены 1-2 ошибки;
Оценка "3" ставится, если допущены 1-2 ошибки и 3-4 недочета;
Оценка "2" ставится, если допущены 3 и более ошибок;
При оценке комбинированных работ:
 
Оценка "5" ставится, если работа выполнена безошибочно;
Оценка "4" ставится, если в работе допущены 1-2 ошибки и 1-2 недочета, при этом ошибки не должно быть в задаче;
Оценка "3" ставится, если в работе допущены 3-4 ошибки и 3-4 недочета;
Оценка "2" ставится, если в работе допущены 5 ошибок;
При оценке работ, включающих в себя решение выражений на порядок действий:
считается ошибкой неправильно выбранный порядок действий, неправильно выполненное арифметическое действие;
Оценка "5" ставится, если работа выполнена безошибочно;
Оценка "4" ставится, если в работе допущены 1-2 ошибка;
Оценка "3" ставится, если в работе допущены 3 ошибки; 
Оценка "2" ставится, если в работе допущено 4 и более ошибок;
При оценке работ, включающих в себя решение уравнений:
считается ошибкой неверный ход решения, неправильно выполненное действие, а также, если не выполнена проверка;
Оценка "5" ставится, если работа выполнена безошибочно;
Оценка "4" ставится, если в работе допущены 1-2 ошибка;
Оценка "3" ставится, если в работе допущены 3 ошибки; 
Оценка "2" ставится, если в работе допущено 4 и более ошибок;
При оценке заданий, связанных с геометрическим материалом:
считается ошибкой, если ученик неверно построил геометрическую фигуру, если не соблюдал размеры, неверно перевел одни единицы измерения в другие, если не умеет использовать чертежный инструмент для измерения или построения геометрических фигур;
Оценка "5" ставится, если работа выполнена безошибочно;
Оценка "4" ставится, если в работе допущены 1-2 ошибка;
Оценка "3" ставится, если в работе допущены 3 ошибки; 
Оценка "2" ставится, если в работе допущено 4 и более ошибок;
Примечание: за грамматические ошибки, допущенные в работе, оценка по математике не снижается.
 
Оценивание письменной работы по математике учащихся с ЗПР
В основе данного оценивания лежат следующие показатели:
 
- положительная динамика усвоения знаний учащимися;
- правильность выполнения заданий и их объем;
Ошибки :
- незнание или неправильное применение свойств, правил, алгоритмов, существующих зависимостей, лежащих в основе выполнения задания или используемых в ходе его выполнения;
- неправильный выбор действий;
- неверные вычисления в случае, когда цель задания - проверка вычислительных навыков.
Недочеты:
- неправильное осмысление данных (чисел, знаков, обозначений, величин);
- ошибки в записи математических терминов, символов при оформлении математических выкладок;
- нарушение логического строя предложений в пояснениях к задачам, несоответствие пояснительного текста, или ответа задания, или наименования величин выполненным действиям и полученным результатам;
- наличие или отсутствие действий при правильном ответе;
- отсутствие ответа к заданию или ошибки в записи ответа;
Снижение отметки за общее впечатление от работы не допускается.
Оценивание работы по объему и правильности выполнения
 
Оценка "5" ставится в том случае, если учащийся выполнил 4 задания (до заданий со *); 
Оценка "4" ставится в том случае, если учащийся выполнил задачу и 1 задание из остальных предложенных либо допущено 1 - 3 ошибки; 
Оценка "3" ставится в том случае, если учащийся выполнил задачу и приступил к выполнению какого-либо еще задания или если есть положительная динамика по сравнению с предыдущей контрольной работой либо допущено 4 - 6 ошибок;
Оценка "2" ставится, если в работе допущено 7 и более ошибок;
Оценка устных ответов.
В основу оценивания устного ответа учащихся положены следующие показатели: правильность, обоснованность, самостоятельность, полнота.
Ошибки :
- неправильный ответ на поставленный вопрос;
 
- неумение ответить на поставленный вопрос или выполнить задание без помощи учителя;
- при правильном выполнении задания неумение дать соответствующие объяснения.
Недочеты :
- неточный или неполный ответ на поставленный вопрос;
- при правильном ответе неумение самостоятельно и полно обосновать и проиллюстрировать его;
- неумение точно сформулировать ответ решенной задачи;
 
- медленный темп выполнения задания, не являющийся индивидуальной особенностью школьника;
 
- неправильное произношение математических терминов.
Оценка "5" ставится ученику, если он:
- при ответе обнаруживает осознанное усвоение изученного учебного материала и умеет им самостоятельно пользоваться;
- производит вычисления правильно и достаточно быстро;
- умеет самостоятельно решить задачу (составить план, решить, объяснить ход решения и точно сформулировать ответ на вопрос задачи);
- правильно выполняет практические задания.
Оценка "4"ставится ученику, если его ответ в основном соответствует требованиям, установленным для оценки "5", но:
- ученик допускает отдельные неточности в формулировках;
- не всегда использует рациональные приемы вычислений.
При этом ученик легко исправляет эти недочеты сам при указании на них учителем.
Оценка "3" ставится ученику, если он показывает осознанное усвоение более половины изученных вопросов, допускает ошибки в вычислениях и решении задач, но исправляет их с помощью учителя.
Оценка "2" ставится ученику, если он обнаруживает незнание большей части программного материала, не справляется с решением задач и вычислениями даже с помощью учителя.
Итоговая оценка знаний, умений и навыков
1. . За учебную четверть и за год знания, умения и навыки учащихся по математике в 2-4 классах оцениваются одним баллом. 2. Основанием для выставления итого вой оценки знаний служат результаты наблюдений учителя за повседневной работой учеников, устного опроса, текущих и итоговых контрольных работ. Однако последним придается наибольшее значение.
 
3. При выставлении итоговой оценки учитывается как уровень теоретических знаний ученика, так и овладение им практическими умениями и навыками. Однако ученику не может быть выставлена положительная итоговая оценка по математике, если все или большинство его текущих обучающих и контрольных работ, а также итоговая контрольная работа оценены как неудовлетворительные, хотя его устные ответы оценивались положительно.
Особенности организации контроля по математике.
Текущий контроль по математике можно осуществлять как в письменной, так и в устной форме. Письменные работы для текущего контроля рекомендуется проводить не реже одного раза в неделю в форме самостоятельной работы или математического диктанта. Желательно, чтобы работы для текущего контроля состояли из нескольких однотипных заданий, с помощью которых осуществляется всесторонняя проверка только одного определенного умения (например, умения сравнивать натуральные числа, умения находить площадь прямоугольника и др.).
Тематический контроль по математике в начальной школе проводится в основном в письменной форме. Для тематических проверок выбираются узловые вопросы программы: приемы устных вычислений, действия с многозначными числами, измерение величин и др. Среди тематических проверочных работ особое место занимают работы, с помощью которых проверяются знания табличных случаев сложения, вычитания, умножения и деления. Для обеспечения самостоятельности учащихся подбирается несколько вариантов работы, каждый из которых содержит 30 примеров (соответственно по 15 на сложение и вычитание или умножение и деление). На выполнение такой работы отводится 5-6 минут урока.
Итоговый контроль по математике проводится в форме контрольных работ комбинированного характера (они содержат арифметические задачи, примеры, задания по геометрии и др.). В этих работах сначала отдельно оценивается выполнение задач, примеров, заданий по геометрии, а затем выводится итоговая отметка за всю работу.
При этом итоговая отметка не выставляется как средний балл, а определяется с учетом тех видов заданий, которые для данной работы являются основными.
Нормы оценок за итоговые контрольные работы соответствуют общим требованиям, указанным в данном документе.









Тексты КИМов приложены в PDF формате.

























Только до конца зимы! Скидка 60% для педагогов на ДИПЛОМЫ от Столичного учебного центра!

Курсы профессиональной переподготовки и повышения квалификации от 1 400 руб.
Для выбора курса воспользуйтесь удобным поиском на сайте KURSY.ORG


Вы получите официальный Диплом или Удостоверение установленного образца в соответствии с требованиями государства (образовательная Лицензия № 038767 выдана ООО "Столичный учебный центр" Департаментом образования города МОСКВЫ).

Московские документы для аттестации: KURSY.ORG


Общая информация

Номер материала: ДВ-513298

Похожие материалы



Очень низкие цены на курсы переподготовки от Московского учебного центра для педагогов

Специально для учителей, воспитателей и других работников системы образования действуют 60% скидки (только до конца зимы) при обучении на курсах профессиональной переподготовки (124 курса на выбор).

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца с присвоением квалификации (признаётся при прохождении аттестации по всей России).

Подайте заявку на интересующий Вас курс сейчас: KURSY.ORG