Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике в 9 классе

Рабочая программа по математике в 9 классе

  • Математика

Поделитесь материалом с коллегами:

Пояснительная записка

  1. Рабочая программа составлена на основе федерального компонента государственного стандарта основного общего образования. Данная рабочая программа по математике ориентирована на учащихся 9 класса и реализуется на основе следующих документов:

  2. 1. Программа для общеобразовательных школ:

  3. «Алгебра 7 – 9 классы. Программы общеобразовательных учреждений». Т. А. Бурмистрова - М.: Просвещение, 2009.

  4. 2. Программа для общеобразовательных школ:

  5. «Геометрия 7 -9 классы. Программы общеобразовательных учреждений». Т. А. Бурмистрова - М., «Просвещение», 2009.

  6. 3. Стандарт основного общего образования по математике.

  7. Стандарт основного общего образования по математике //Математика в школе. – 2004г,-№4

  8. Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.


Цели и задачи, решаемые при реализации рабочей программы

  • расширить сведения о свойствах функ­ций, ознакомить учащихся со свойствами и графиком квадратич­ной функции, выработать умение строить график квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной;

  • выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью составления таких систем;

  • дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида;

  • научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач;

  • развить умение применять тригонометрический аппарат при решении геометрических задач;

  • расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы их вычисления;

  • познакомить учащихся с понятием движения и его свойствами, с основными видами движений;

  • дать представление о статистических закономерностях в реальном мире и о различных способах их изучения, об осо­бенностях выводов и прогнозов, носящих вероятностный ха­рактер;

  • формировать ИКТ компетентность через уроки с элементами ИКТ;

  • формировать навык работы с тестовыми заданиями;

  • подготовить учащихся к итоговой аттестации в новой форме.

Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики отводится 170 ч из расчета 5 ч в неделю. Алгебра изучается 3 ч в неделю, всего 102 часа, геометрия 2 часа в неделю, всего 68 часов. При планировании учебного материала по алгебре был использован учебник под редакцией Теляковского С.А. и другие, по геометрии - Атанасян Л. С. и другие.

Ведущие формы и методы, технологии обучения

Обучение несет деятельностный характер, акцент делается на обучение через практику, продуктивную работу учащихся в малых группах, использование межпредметных связей, развитие самостоятельности учащихся и личной ответственности за принятие решений. Применяются на уроках элементы ИКТ-технологии, личностно-ориентированной технологии, технологии интегрированного обучения, проблемного обучения; проектного обучения.


Механизмы формирования ключевых компетенций


В настоящее время актуальны компетентностный, личностно-ориентированный, деятельностный  подходы, которые определяют задачи обучения:

  • приобретение математических знаний и умений;

  • овладение обобщенными способами мыслительной, творческой деятельностей;

  • освоение компетенций: учебно-познавательной, коммуникативной, рефлексивной,  личностного  саморазвития, ценностно-ориентационной.


Компетентностный подход обеспечивает совершенствование  математических навыков, содержит сведения о способах добывания и практическом применении математических знаний, способствует развитию учебно-познавательной и рефлексивной компетенции. Это содержание обучения является базой для развития коммуникативно - информационной компетенции учащихся.

 
Личностная ориентация образовательного процесса выявляет приоритет воспитательных и развивающих целей обучения. Способность учащихся  понимать причины и логику развития математических процессов открывает возможность для осмысленного восприятия всего разнообразия мировоззренческих, социокультурных систем, существующих в современном мире.  Система учебных занятий призвана способствовать развитию личностной самоидентификации, гуманитарной культуры школьников, усилению мотивации к социальному познанию и творчеству, воспитанию личностно и общественно востребованных качеств, в том числе гражданственности, толерантности.


Деятельностный подход отражает стратегию современной образовательной политики: необходимость воспитания человека и гражда­нина, интегрированного в современное ему общество, нацеленного на совершенствование этого общества. Система уроков сориентирована не столько на передачу «готовых знаний», сколько на форми­рование активной личности, мотивированной к самообразованию, обладающей достаточными навыками и психологическими установками к самостоятельному поиску, отбо­ру, анализу и использованию информации. Это поможет учащимся адаптироваться в мире, где объем информации, растет в геометрической прогрессии, где социальная и профессиональная успешность напрямую зависят от позитивного отношения к новациям, самостоятельности мышления и инициативности, от готовности проявлять творческий подход к делу, искать нестандартные способы решения проблем, от готовности к конструктивному взаимодействию с людьми.


В ходе преподавания математики в основной школе, следует обращать внимание на то, чтобы учащиеся овла­девали умениями общеучебного характера, разнообразными спо­собами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельно­сти, выполнения заданных и конструирования новых алгоритмов;

  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов ре­шения;

  • исследовательской деятельности, развития идей, проведения экс­периментов, обобщения, постановки и формулирования новых задач;

  • ясного, точного, грамотного изложения своих мыслей в уст­ной и письменной речи, использования различных языков мате­матики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпре­тации, аргументации и доказательства;

  • проведения доказательных рассуждений, аргументации, вы­движения гипотез и их обоснования;

  • поиска, систематизации, анализа и классификации информа­ции, использования разнообразных информационных источни­ков, включая учебную и справочную литературу, современные информационные технологии.

В связи с изложенным:

  • целью предмета становится не процесс, а достижение учащимися определенного результата;

  • в процедуру оценивания включается рефлексия, наблюдение за деятельностью учащихся;

  • содержание материала урока подбирается так, чтобы оно было источником для самостоятельного поиска решения проблемы, способствовало развитию у учащихся познавательной активности, мышления, творчества, чтобы позволяло каждому ученику реализовать в процессе обучения свои возможности;

  • целенаправленно используются межпредметные связи для эффективного достижения целей;

  • обращение к жизненному опыту учащихся;

  • практическая применимость выдвигается на первое место не только как критерий обученности, но и как инструмент обучения.


Элементы педагогических технологий: интегрированного обучения; проблемного обучения; проектного обучения являются механизмами формирования ключевых компетенций учащихся.

Планируется использование элементов новых педагогических технологий в преподавании предмета. В течение года возможны коррективы календарно – тематического планирования, связанные с объективными причинами.


Требования к уровню подготовки выпускников 9 класса

Знать/понимать

Существо понятия математического доказательства, приводить примеры доказательств.

Существо понятия алгоритма, приводить примеры алгоритмов.

Как используются математические формулы, уравнения и неравенства, примеры их применения для решения математических и практических задач.

Как математически определенные функции могут описывать реальные зависимости, приводить примеры таких описаний

Как потребности практики привели математическую науку к необходимости расширения понятия числа.

Вероятностный характер многих закономерностей окружающего мира, примеры статистических закономерностей и выводов.

Каким образом геометрия возникла из практических задач землемерия, примеры геометрических объектов и утверждений о них, важных для практики.

Смысл формализации, позволяющий решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при формализации.

Арифметика

Уметь использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычислений с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Алгебра

Уметь

  • составлять формулу по условию задачи; осуществлять числовые подстановки и выполнять соответствующие вычисления в формулах, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через другую;

  • применять свойства арифметических корней для вычисления значений и преобразования числовых выражений, содержащих корни;

  • решать линейные, квадратные и рациональные уравнения, сводящиеся к ним, системы двух уравнений, линейные и несложные нелинейные;

  • решать линейные и квадратные неравенства и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа на координатной прямой и точки с заданной координатой на координатной плоскости; изображать множество решений неравенства на координатной прямой;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значение функции по ее аргументу, значение аргумента по значению функции;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; находить нужные формулы в справочных материалах;

  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами

Геометрия

уметь

  • пользоваться геометрическим языком для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задачи; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин, в том числе тригонометрических функций; находить стороны, углы и площади треугольников, правильных многоугольников, некоторых четырехугольников, длины ломаных и дуг окружности; находить площади основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

  • проводить доказательные рассуждения при решении задач.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами.

Элементы логики, комбинаторики, статистики и теории вероятностей

Уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждения;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятность случайного события в простейших случаях.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве в диалоге;

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности;

  • решения учебных и практических задач, требующих системного перебора вариантов;

  • сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.

Учебно тематический план


Название темы

Количество часов


1

Квадратичная функция

22


Функции и их свойства

5


Квадратный трехчлен

4


Контрольная работа по теме «Функции и их свойства. Квадратный трехчлен»

1


Квадратичная функция и ее график

8


Степенная функция. Корень n-й степени.

3


Контрольная работа по теме «Квадратичная функция и ее график»

1

2

Векторы

8


Понятие вектора.

2


Сложение и вычитание векторов.

3


Умножение вектора на число. Применение векторов к решению задач.

3

3

Метод координат

10


Координаты вектора.

2


Простейшие задачи в координатах.

2


Уравнение окружности и прямой.

3


Решение задач.

2


Контрольная работа по теме «Векторы»

1

4

Уравнения и неравенства с одной переменной

14


Уравнения с одной переменной.

8


Неравенства с одной переменной.

5


Контрольная работа по теме «Уравнения и неравенства с одной переменной»

1

5

Уравнения и неравенства с двумя переменными

17


Уравнения с двумя переменными и их системы.

12


Неравенства с двумя переменными и их системы.

4


Контрольная работа по теме «Уравнения и неравенства с двумя переменными»

1

6


Соотношения между сторонами и углами треугольника.

Скалярное произведение векторов


11


Синус, косинус, тангенс угла

3


Соотношения между сторонами и углами треугольника

4


Скалярное произведение векторов

2


Решение задач

1


Контрольная работа по теме «Соотношения между сторонами и углами треугольника»

1

7

Арифметическая и геометрическая прогрессии

15


Арифметическая прогрессия

7


Контрольная работа по теме «Арифметическая прогрессия»

1


Геометрическая прогрессия

6


Контрольная работа по теме « Геометрическая прогрессия»

1

8

Длина окружности и площадь круга

12


Правильные многоугольники

4


Длина окружности и площадь круга

4


Решение задач

3


Контрольная работа по теме «Длина окружности и площадь круга»

1

9

Движения

8


Понятие движения

3


Параллельный перенос и поворот

3


Решение задач

1


Контрольная работа по теме «Движения»

1

10

Элементы комбинаторики и теории вероятностей

13


Элементы комбинаторики

8


Начальные сведения из теории вероятностей

3


Контрольная работа по теме «Элементы комбинаторики и теории вероятностей»

1

11

Начальные сведения из стереометрии

8


Многогранники

4


Тела и поверхности вращения

4


Об аксиомах планиметрии

2


Повторение

30


Итоговая контрольная работа

2


















Содержание обучения


Алгебра

Свойства функций. Квадратичная функция


Функция. Свойства функций. Квадратный трехчлен. Разло­жение квадратного трехчлена на множители. Функция у = ах2 + Ьх + с, ее свойства и график. Степенная функция.


Основная цель — расширить сведения о свойствах функ­ций, ознакомить учащихся со свойствами и графиком квадратич­ной функции.

В начале темы систематизируются сведения о функциях. По­вторяются основные понятия: функция, аргумент, область опре­деления функции, график. Даются понятия о возрастании и убы­вании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квад­ратного трехчлена, разложении квадратного трехчлена на мно­жители .

Изучение квадратичной функции начинается с рассмотрения функции у = ах2, ее свойств и особенностей графика, а также других частных видов квадратичной функции — функций у = ах2 + Ь, у = а (х т)2. Эти сведения используются при изуче­нии свойств квадратичной функции общего вида. Важно, чтобы учащиеся поняли, что график функции у = ах2 + Ьх + с может быть получен из графика функции у = ах2 с помощью двух па­раллельных переносов. Приемы построения графика функции у = ах2 + Ьх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у учащих­ся умения указывать координаты вершины параболы, ее ось сим­метрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функ­ции, а также промежутки, в которых функция сохраняет знак.

Учащиеся знакомятся со свойствами степенной функции у = хп при четном и нечетном натуральном показателе п. Вводит­ся понятие корня n-й степени. Учащиеся должны понимать смысл записей вида hello_html_304961fc.png. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.



Уравнения и неравенства с одной переменной


Целые уравнения. Дробные рациональные уравнения. Нера­венства второй степени с одной переменной. Метод интервалов.


Основная цель — систематизировать и обобщить сведе­ния о решении целых и дробных рациональных уравнений с од­ной переменной, сформировать умение решать неравенства вида ах2 + Ьх + с > 0 или ах2 + Ьх + с < 0, где а 0.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобще­ние и углубление сведений об уравнениях. Вводятся понятия це­лого рационального уравнения и его степени. Учащиеся знако­мятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспо­могательной переменной. Метод решения уравнений путем введе­ния вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмиче­ских и других видов уравнений.

Расширяются сведения о решении дробных рациональных уравнений. Учащиеся знакомятся с некоторыми специальными приемами решения таких уравнений.

Формирование умений решать неравенства вида ах2 + Ьх + с > 0 или ах2 + Ьх + с < 0, где а0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы, ее расположение относительно оси Ох).

Учащиеся знакомятся с методом интервалов, с помощью ко­торого решаются несложные рациональные неравенства.


Уравнения и неравенства с двумя переменными


Уравнение с двумя переменными и его график. Системы урав­нений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.


Основная цель — выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя перемен­ными, и текстовые задачи с помощью составления таких систем.

В данной теме завершается изучение систем уравнений с дву­мя переменными. Основное внимание уделяется системам, в ко­торых одно из уравнений первой степени, а другое второй. Из­вестный учащимся способ подстановки находит здесь дальнейшее hello_html_m1bb31837.gifприменение и позволяет сводить решение таких систем к реше­нию квадратного уравнения.

Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограни­чиваться простейшими примерами.

Привлечение известных учащимся графиков позволяет при­вести примеры графического решения систем уравнений. С помо­щью графических представлений можно наглядно показать уча­щимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет сущест­венно расширить класс содержательных текстовых задач, решае­мых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства с двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными использу­ются при иллюстрации множеств решений некоторых простей­ших неравенств с двумя переменными и их систем.


Прогрессии


Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых п членов прогрессии. Бесконечно убываю­щая геометрическая прогрессия.


Основная цель — дать понятия об арифметической и гео­метрической прогрессиях как числовых последовательностях осо­бого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вы­рабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых п членов про­грессий, помимо своего основного назначения, позволяет неодно­кратно возвращаться к вычислениям, тождественным преобразо­ваниям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметиче­ской и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.







Элементы комбинаторики и теории вероятностей


Комбинаторное правило умножения. Перестановки, размеще­ния, сочетания. Относительная частота и вероятность случайного события.


Основная цель — ознакомить учащихся с понятиями пе­рестановки, размещения, сочетания и соответствующими форму­лами для подсчета их числа; ввести понятия относительной час­тоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требу­ется составить те или иные комбинации элементов и подсчитать их число. Разъясняется комбинаторное правило умножения, ко­торое используется в дальнейшем при выводе формул для подсче­та числа перестановок, размещений и сочетаний.

При изучении данного материала необходимо обратить внима­ние учащихся на различие понятий «размещение» и «сочета­ние», сформировать у них умение определять, о каком виде ком­бинаций идет речь в задаче.

В данной теме учащиеся знакомятся с начальными сведения­ми из теории вероятностей. Вводятся понятия «случайное собы­тие», «относительная частота», «вероятность случайного собы­тия». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание учащихся на то, что классическое определение вероят­ности можно применять только к таким моделям реальных собы­тий, в которых все исходы являются равновозможными.



Геометрия


Векторы. Метод координат


Понятие вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простей­шие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.


Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание дол­жно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и па­раллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конк­ретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.


Соотношения между сторонами и углами треугольника.

Скалярное произведение векторов. Синус, косинус и тангенс угла. Теоремы синусов и косину­сов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.


Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помо­щью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольни­ка (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рас­сматриваются свойства скалярного произведения и его примене­ние при решении геометрических задач.

Основное внимание следует уделить выработке прочных на­выков в применении тригонометрического аппарата при реше­нии геометрических задач.


Длина окружности и площадь круга


Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.


Основная цель — расширить знание учащихся о много­угольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

В начале темы дается определение правильного многоуголь­ника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помо­щью описанной окружности решаются задачи о построении пра­вильного шестиугольника и правильного 2га-угольника, если дан правильный /г-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружно­сти и площади круга. Вывод опирается на интуитивное представ­ление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его пери­метр стремится к длине этой окружности, а площадь — к площа­ди круга, ограниченного окружностью.


Движения


Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. На­ложения и движения.


Основная цель — познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотре­нии видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основ­ных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движенц­ем плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий нало­жения и движения.


Об аксиомах геометрии


Беседа об аксиомах геометрии.


Основная цель — дать более глубокое представление о си­стеме аксиом планиметрии и аксиоматическом методе.

В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.


Начальные сведения из стереометрии


Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: ци­линдр, конус, сфера, шар, формулы для вычисления их площа­дей поверхностей и объемов.

Основная цель — дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основ­ными формулами для вычисления площадей поверхностей и объ­емов тел.

Рассмотрение простейших многогранников (призмы, парал­лелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе нагляд­ных представлений, без привлечения аксиом стереометрии. Фор мулы для вычисления объемов, указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площа­дей боковых поверхностей цилиндра и конуса получаются с по­мощью разверток этих поверхностей, формула площади сферы приводится без обоснования.


Повторение. Решение задач.





































ПЕРЕЧЕНЬ ЛИТЕРАТУРЫ И СРЕДСТВ ОБУЧЕНИЯ

  1. Алгебра. Учебник для 9 класса./ Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова. - М.: Просвещение, 2007. Рекомендован Министерством образования и науки РФ к использованию в образовательном процессе в общеобразовательных учреждениях на 2009-2010 учебный год.

  2. Геометрия. Учебник для 9 класса./ Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. - М.: Просвещение, 2006. Рекомендован Министерством образования и науки РФ к использованию в образовательном процессе в общеобразовательных учреждениях на 2009-2010 учебный год.

  3. Ю. Н. Макарычев Алгебра: дидакт. материалы для 9 класса./ Ю.Н.Макарычев, Н.Г.Миндюк, Л.М.Короткова. – М.: Просвещение, 2008.

  4. В. И. Жохов Уроки алгебры в 9 классе: кн. для учителя/ В.И.Жохов, Л.Б.Крайнева. - М.: Просвещение, 2008.

  5. Алгебра: сб. заданий для подготовки к итоговой аттестации в 9 кл./ Л.В.Кузнецова, С.Б Суворова, Е.А.Бунимович и др. - М.: Просвещение, 2006 - 2008.

  6. В. И. Жохов Геометрия 7-9 кл.: кн. для учителя/ В.И.Жохов, Л.Б.Крайнева. - М.: Просвещение, 2003 - 2008.

  7. Б.Г.Зив Геометрия: дидакт. материалы для 9 класса.- М.: Просвещение, 2004 – 2008.

  8. Н.Ф. Гаврилова Поурочные разработки по геометрии 9 кл./ М.: Вако, 2006

  9. В.А.Гольдич Алгебра. Решение уравнений и наравенств.-С-Пб. «Литера», 2005

  10. Л.В.Кузнецова, С.Б Суворова Государственная итоговая аттестация выпускников 9 класса в новой форме./ М. «Интеллект-центр», 2009.

  11. В.Н.Литвиненко, Г.К.Безрукова Сборник задач по геометрии, 9 класс./ М. «Экзамен», 2008.

Автор
Дата добавления 13.11.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров108
Номер материала ДВ-151965
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх