Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа учебного курса по математике 6 класс

Рабочая программа учебного курса по математике 6 класс



57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)


  • Математика

Поделитесь материалом с коллегами:





Муниципальное образование город Горячий Ключ


муниципальное бюджетное общеобразовательное учреждение


средняя общеобразовательная школа № 1


муниципального образования город Горячий Ключ


УТВЕРЖДЕНО

решение педсовета протокол № 1

от «29» августа 2013 года

председатель педсовета

директор МБОУ СОШ №1

___________



РАБОЧАЯ ПРОГРАММА


факультативного курса «Математика без границ»


Ступень обучения (класс): основное общее образование, 6А,Б


Количество часов: всего 34ч, в неделю 1 час

Учитель: Ковязова Татьяна Николаевна





Рабочая программа факультативного курса «Математика без границ» для 6 класса составлена с учетом требований Федерального государственного образовательного стандарта основного общего образования.













Пояснительная записка

Рабочая программа факультативного курса «Математика без границ» составлена с учетом требований Федерального государственного образовательного стандарта основного общего образования и предназначена для работы в 6-х классах общеобразовательной школы на 1 год обучения ( 1час в неделю, 34ч)

Для жизни в современном обществе важным является формирование математического мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включается индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление.

Основная задача обучения математике в школе заключается в обеспечении прочного и сознательного овладения учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену современного общества, достаточных для изучения смежных дисциплин и продолжения образования.

Основная цель курса – создание условий для развития интереса учащихся к математике, формирование интереса к творческому процессу, развитие творческих способностей, логического мышления, углубление знаний, полученных на уроке и расширение общего кругозора ребенка в процессе живого и забавного рассмотрения различных практических задач и вопросов, решаемых с помощью одной арифметики или первоначальных понятий об элементарной геометрии, изучения интересных фактов из истории математики.

Достижение этой цели обеспечено посредством решения следующих задач:

  • пробуждение и развитие устойчивого интереса учащихся к математике и ее приложениям;

  • углубление и расширение знаний учащихся по математике;

  • развитие математического кругозора, мышления, научно-исследовательских умений учащихся;

  • формирование представлений о математике как части общечеловеческой культуры;

  • воспитание высокой культуры математического мышления, чувства коллективизма, трудолюбия, терпения, настойчивости, инициативы.

Частично данные задачи реализуются и на уроке, но окончательная и полная реализация их переносится на факультативные занятия.

Основными педагогическими принципами, обеспечивающими реализацию программы, являются:

  • учет возрастных и индивидуальных особенностей каждого ребенка;

  • доброжелательный психологический климат на занятиях;

  • личностно-деятельный подход к организации учебно-воспитательного процесса;

  • подбор методов занятий соответственно целям и содержанию занятий и эффективности их применения;

  • оптимальное сочетание форм деятельности;

  • преемственность, каждая новая тема логически связана с предыдущей;

  • доступность.

Программа содержит разные уровни сложности изучаемого материала и позволяет найти оптимальный вариант работы с той или иной группой обучающихся.

В процессе изучения данного факультативного курса предполагается использование различных методов активизации познавательной деятельности школьников, а также различных форм организации их самостоятельной работы: практикумов, викторин, дидактических игр, защиты творческих работ и т.д.

Факультативный курс является неотъемлемой частью учебно-воспитательной работы в школе и является одной из важных составляющих программы «Работа с одаренными детьми».

Наряду с решением основной задачи факультативные занятия предусматривают формирование у учащихся устойчивого интереса к предмету, выявление и развитие их математических способностей. Он способствует углублению знаний учащихся, развитию их дарований, логического мышления, расширяет кругозор. Кроме того, данный курс по математике имеет большое воспитательное значение, ибо цель не только в том, чтобы осветить какой-либо узкий вопрос, но и в том, чтобы заинтересовать учащихся предметом, вовлечь их в серьезную самостоятельную творческую работу.

Факультативный курс – это самодеятельное объединение учащихся под руководством учителя, в рамках которого проводятся систематические занятия с учащимися во внеурочное время.

В содержание курса включены исторические аспекты возникновения чисел, вычислений и математических знаков, жизнь и работа великих математиков, введены понятия геометрических фигур и терминов геометрии. Рассматриваются различные практические вопросы и задачи, игры, ребусы, головоломки, софизмы, сказки, фольклор. Проводится подготовка к олимпиаде по математике.

Занятия проходят в форме эвристической беседы с опорой на индивидуальные сообщения учащихся. В ходе занятий предполагается выполнение практического занятия. Темы предстоящих занятий следует объявлять заранее, чтобы каждый ученик имел возможность выступить на занятиях. Задачи на занятиях подбираются с учетом рациональной последовательности их предъявления: от репродуктивных, направленных на актуализацию знаний, к частично-поисковым, ориентированным на овладение обобщенными приемами познавательной деятельности. Система занятий должна вести к формированию следующих характеристик творческих способностей: беглость мысли, гибкость ума, оригинальность, любознательность, умение выдвигать и разрабатывать гипотезы.

В основе работы курса лежит принцип добровольности. Для обучения по программе принимаются все желающие учащиеся шестого класса. Как известно, устойчивый интерес к математике начинает формироваться в 14-15 лет. Но это не происходит само собой: для того, чтобы ученик в 7 или 8 классе начал всерьёз заниматься математикой, необходимо, чтобы на предыдущих этапах он почувствовал, что размышления над трудными, нестандартными задачами могут доставлять подлинную радость.

Освоение содержания программы способствует интеллектуальному, творческому, эмоциональному развитию учащихся. При реализации содержания программы учитываются возрастные и индивидуальные возможности учащихся.

Основу программы составляют инновационные технологии: личностно - ориентированные, адаптированного обучения, индивидуализация, ИКТ - технологии.

Программа содержит в основном традиционные темы занимательной математики: арифметику, логику, комбинаторику и т.д. Уровень сложности подобранных заданий таков, что к их рассмотрению можно привлечь значительное число учащихся, а не только наиболее сильных.

При отборе содержания и структурирования программы использованы общедидактические принципы: доступности, преемственности, перспективности, развивающей направленности, учёта индивидуальных способностей, органического сочетания обучения и воспитания, практической направленности и посильности.


Ожидаемые результаты:

Основным результатом освоения программы курса является представление школьниками творческой индивидуальной или групповой работы на итоговом занятии (защита творческих работ).


По окончании обучения учащиеся должны знать:

  • нестандартные методы решения различных математических задач;

  • логические приемы, применяемые при решении задач;

  • историю развития математической науки, биографии известных ученых-математиков;

  • основные методы и приемы решения олимпиадных задач.


По окончании обучения учащиеся должны уметь:

  • рассуждать при решении логических задач, задач на смекалку, задач на эрудицию и интуицию;

  • систематизировать данные в виде таблиц при решении задач, при составлении математических кроссвордов, шарад и ребусов;

  • применять нестандартные методы при решении программных и олимпиадных задач;

  • уметь представлять и защищать индивидуальные, коллективные, творческие и исследовательские работы.






Таблица

тематического распределения количества часов

п/п

Содержание (разделы, темы)

Количество часов

I.

Путешествие в историю математики

8

II .

Знакомство с геометрией

6

III.

Решение различных задач

7


IV.

Математические игры и головоломки

5

V.

Круги Эйлера, элементы комбинаторики и теории вероятностей

5

VI.

Заключительное занятие

3

ИТОГО

34


Содержание

I.Путешествие в историю математики ( 8ч )

1.Вводное занятие (1ч)

Беседа о происхождении арифметики. История возникновения математики.

2. История возникновения цифр и чисел. Числа великаны. (1ч)

Беседа о возникновении цифр и чисел у разных народов земли, с применением докладов учащихся. Презентация «Эти удивительные числа».

3.Системы счисления. История нуля. (1ч)

Различные системы счисления, их история возникновения и применения в жизни различных народов. Нуль такой неизвестный, таинственный и разный.

4. Правила и приемы быстрого счета. (2ч)

Научить учащихся быстро считать, применяя некоторые способы счета.

5. История математических знаков. История циркуля, транспортира. (1ч)

История возникновения циркуля и транспортира, их применение в древности и по сей день.

Возникновение и открытие математических знаков. Что такое числа «великаны», в каких отраслях используют числа «великаны».

6. Великие математики древности. Женщины математики. (2ч)

Эратосфен, Архимед, Пифагор, Евклид, Фалес. Жизнь, творчество, работы великих математиков, их вклад в развитии математической науки. Презентация «Творцы математики и их открытия».

Гипатия, Жермен Софи, Лавлейс Ада, Мария Аньези, Софья Ковалевская, Любовь Запольская.

Их жизнь и вклад в развитие математики.

II. Знакомство с геометрией ( 6ч )

1. История возникновения геометрии. Геометрические термины в жизни. (1ч)

История возникновения геометрии. Как зарождалась наука геометрия. Где она возникла и как развивалась. Какие геометрические термины произошли из жизни. Привести примеры, решить задачи. Презентация « История геометрических терминов».

2.Геометрические фигуры. Сказки о геометрических фигурах. (1ч)

Сказки о прямоугольнике, о квадрате. Новоселье шара. Случай из жизни плоскости. История о круглых братьях. Презентация о геометрических фигурах.

3. Треугольник. Египетский треугольник. (1ч)

Треугольник, его элементы. Высоты, медианы, биссектрисы треугольника и их свойства. Виды треугольников. Стихи и загадки. Египетский треугольник.

4. Параллелограмм.(1ч)

Определение, его свойства. Частные виды параллелограмма, периметр и площадь.

5. Прямоугольник. Квадрат. (1ч)

Определение, их свойства. Периметр и площадь.

6. Пять правильных многогранников. (1ч)

Тетраэдр, куб, гексаэдр, октаэдр, икосаэдр, додекаэдр их развертки. Платон и четыре стихии природы. Теория четырех стихий мироздания.

III. Решение различных задач ( 7ч )

1. Готовимся к олимпиаде. (3ч)

Математические игры, задачи на проценты, логические задачи, задачи на делимость чисел, задачи на принцип Дирихле, задачи на инвариант, задачи с геометрическим содержанием. Варианты олимпиадных заданий.

2. Конкурс «Кенгуру» (2ч)

Решение задач конкурса «Кенгуру».

3. Старинные задачи по математике. (2ч)

Презентация «Старинные задачи по математике». Решение различных старинных задач.

IV. Математические игры и головоломки ( 5ч )

1. Координатная плоскость. (2ч)

Рисуем животных на координатной плоскости. В поисках клада.

2. Головоломки со спичками (1ч)

Решение различных задач со спичками.

3.Игры, ребусы, загадки, кроссворды, головоломки, софизмы, афоризмы, сказки. (2ч)

Самые забавные задачи, ребусы, загадки, головоломки, сказки. Софизмы, афоризмы, притчи, фокусы.

V. Круги Эйлера, элементы комбинаторики и теории вероятностей ( 5ч )

Круги Эйлера. Комбинации. Дерево возможных вариантов. Достоверные, невозможные и случайные события. Вероятность. Подсчет вероятности.

Практика. Решение задач по комбинаторике и теории вероятности. Решение логических задач с использованием кругов Эйлера.

VI . Заключительное занятие ( 3 ч)

Представление и защита творческих работ учащихся. Подведение итогов.


Литература:

  • Свечников А. Путешествие в историю математики, или как люди учились считать. М.:Педагогика – Пресс, 1995.

  • Глейзер Г.И. История математики в школе. Москва, 1983.

  • Математика: Учеб. для 6 кл. общеобразоват. учреждений. / Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд.- изд.-М.: Мнемозина, 2010г.

  • Олевский В.А. О секрете происхождения арабских цифр. Журнал “ Математика в школе”, №5, 1989.-С. 78.

  • Энциклопедический словарь юного математика / сост. А.П. Савин.- М.: Педагогика, 1989.

  • Шарыгин И.Ф., Шевкин А.В. Математика. Задачи на смекалку 5-6 классы.- М.: «Просвещение», 2000г.

  • Баврин И.И., Фрибус Е.А.Старинные задачи. –М: Просвещение, 1994.

  • Клименко Д.В. Задачи по математике для любознательных. –М: Просвещение, 1992.

  • Шарыгин И.Ф., Ерганжиева Л.Н. Наглядная геометрия 5-6кл - М: Дрофа, 1998.

  • Бунимович Е.А., Булычев В.А. Вероятность и статистика 5-9кл. -М: Дрофа,2002.

  • Фарков А.В. Математические олимпиады в школе. 5-11кл.- М: Айрис- Пресс, 2002.

  • Ю.В.Лепехин. Олимпиадные задания по математике. 5-6 классы. – Волгоград: Учитель, 2011.

  • Ф.А.Пчелинцев, П.В.Чулков. Математика. 5-6класс. Задачи на развитие математического мышления. - М.: «Издат-школа 2000»

  • И.Я. Депман, Н.Я. Виленкин. «За страницами учебника математики: Пособие для учащихся 5 – 6 классов сред школ. – М.: «Просвещение», 2004 г.

  • Перельман, Я. И. Живая математика / Я. И. Перельман. — М. : АСТ , 2009.

  • «Все задачи "Кенгуру"», С-П.,2003г.

  • Интернет - ресурсы.

СОГЛАСОВАНО:




СОГЛАСОВАНО:

Протокол заседания МО

учителей математики, физики, информатики от __________2013г. № __

Руководитель МО ____________




Заместитель директора по УВР


«___»_________________2013г.





СОГЛАСОВАНО

Заместитель директора по УВР

____________________________

«___» ______________ 2013года



Муниципальное образование город Горячий Ключ


муниципальное бюджетное общеобразовательное учреждение


средняя общеобразовательная школа № 1


муниципального образования город Горячий Ключ



КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ

ПЛАНИРОВАНИЕ



по факультативному курсу «Математика без границ»

класс: 6А,Б

Количество часов: всего 34 часа, в неделю 1 час

Учитель: Ковязова Татьяна Николаевна

Планирование составлено на основе рабочей программы учителя математики Ковязовой Т.Н., утвержденной решением педагогического совета МБОУ СОШ №1, протокол № 1 от 29.08.2013г.







КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

ПО ФАКУЛЬТАТИВНОМУ КУРСУ «МАТЕМАТИКА БЕЗ ГРАНИЦ»

на 2013-2014 учебный год, 6класс (1ч в неделю, всего 34ч)


Номер урока

Содержание

(разделы, темы)

Кол-во часов

Дата проведения

Используемые

УН и ЛО

примерная

фактическая

примерная

фактическая






I

Путешествие в историю математики

8


1.

Вводное занятие

1

05.09


06.09



2.

История возникновения цифр и чисел. Числа великаны

1

12.09


13.09


Демонстрационный материал

3.

Системы счисления. История нуля

1

19.09


20.09


Индивидуальные карточки

4.

Правила и приемы быстрого счета

1

26.09


27.09


Демонстрационный материал

5.

Секреты быстрого счета

1

03.10


04.10


Индивидуальные карточки

6.

История математических знаков. История циркуля, транспортира

1

10.10


11.10


Презентация

7.

Великие математики древности

1

17.10


18.10


Презентация

8.

Женщины математики

1

24.10


25.10


Демонстрационный материал

II

Знакомство с геометрией

6


9.

История возникновения геометрии.

Геометрические термины в жизни

1

31.10


01.11


Презентация

10.

Геометрические фигуры .Сказки о геометрических фигурах

1

14.11


15.11


Индивидуальные карточки

11.

Треугольник. Египетский треугольник

1

21.11


22.11


Демонстрационный материал

12.

Параллелограмм.

1

28.11


29.11


Демонстрационный материал

13.

Прямоугольник. Квадрат

1

05.12


06.12


Индивидуальные карточки

14.

Пять правильных многогранников

1

12.12


13.12


Презентация

III

Решение различных задач

7


15.

Математические игры, задачи на проценты, логические задачи, задачи на делимость чисел

1

19.12


20.12


Индивидуальные карточки

16.

Задачи на принцип Дирихле, на инвариант, задачи с геометрическим содержанием.

1

26.12


27.12


Демонстрационный материал

17.

Варианты олимпиадных заданий

1

16.01


17.01


Индивидуальные карточки

18.

Решение задач конкурса «Кенгуру»

1

23.01


24.01


Индивидуальные карточки

19.

Решение задач конкурса «Кенгуру»

1

30.01


31.01


Индивидуальные карточки

20.

Старинные задачи по математике

1

06.02


07.02


Презентация

21.

Решение различных старинных задач

1

13.02


14.02


Индивидуальные карточки

IV

Математические игры и головоломки

5


22.

Рисуем животных на координатной плоскости.

1

20.02


21.02


Индивидуальные карточки

23.

В поисках клада

1

27.02


28.02


Индивидуальные карточки

24.

Решение различных задач со спичками


1

06.03


07.03


Спички

25.

Самые забавные задачи, ребусы, загадки, головоломки, сказки.

1

13.03


14.03


Презентация

26.

Софизмы, афоризмы, притчи, фокусы.

1

20.03


21.03


Демонстрационный материал

V

Круги Эйлера, элементы комбинаторики и теории вероятностей

5


27.

Круги Эйлера

1

03.04


04.04


Демонстрационный материал

28.

Решение логических задач с использованием кругов Эйлера.


1

10.04


11.04


Индивидуальные карточки

29.

Комбинации. Дерево возможных вариантов

1

17.04


18.04


Демонстрационный материал

30.

Достоверные, невозможные и случайные события. Вероятность. Подсчет вероятности.

1

24.04


25.04


Демонстрационный материал

31.

Решение задач по комбинаторике и теории вероятности

1

01.05


02.05


Презентация

VI

Заключительное занятие

3




32.

Представление и защита творческих работ учащихся

1

08.05


09.05


Презентация

33.

Представление и защита творческих работ учащихся

1

15.05


16.05


Презентация

34.

Подведение итогов

1

22.05


23.05



ИТОГО

34













57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)


Автор
Дата добавления 17.08.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров127
Номер материала ДБ-158876
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх