Инфоурок География Рабочие программыРАБОЧАЯ ПРОГРАММА учебного предмета "Математика" для 10,11 классов на 2020-2022 учебные годы, соответствующая ФГОС (углубленный уровень)

РАБОЧАЯ ПРОГРАММА учебного предмета "Математика" для 10,11 классов на 2020-2022 учебные годы, соответствующая ФГОС (углубленный уровень)

Скачать материал
библиотека
материалов

муниципальное казённое общеобразовательное

учреждение Куйбышевского района

"Вечерняя (сменная) общеобразовательная школа"



ПРИНЯТО

педагогическим советом

МКОУ ВСОШ

Протокол от 31.08.2020 № 1

УТВЕРЖДАЮ

Директор МКОУ ВСОШ

__________И.В. Кобелева

"___"___________2020







РАБОЧАЯ ПРОГРАММА

учебного предмета "Математика"

для 10,11 классов

на 2020-2022 учебные годы,

соответствующая ФГОС

(углубленный уровень)














Составитель:

Медведева Л.А.,

учитель математики первой квалификационной категории







г. Куйбышев

2020 год

Рабочая программа учебного предмета «Математика: алгебра и начала анализа, геометрия» обязательной предметной области «Математика и информатика» разработана на основе федерального государственного образовательного стандарта среднего общего образования, утвержденного приказом Министерства образования и науки Российской Федерации от 17.05.2012 № 413 «Об утверждении федерального государственного образовательного стандартасреднего общего образования» (в действующей редакции) и с учетом Примерной основной образовательной программы среднего общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016г. № 2/16-з).

Рабочая программа реализуется на основе УМК:

- Алимов Ш.А., Колягин Ю.М., Ткачёва М.В. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углубленный уровни) 10-11 класс. АО: «Просвещение», 2019;

- Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни) 10-11 класс. АО: «Просвещение», 2019.


Планируемые результаты освоения учебного предмета


Личностные результаты


Личностные результаты в сфере отношений учащихся к себе, к своему здоровью, к познанию себя:

  • ориентация учащихся на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;

  • готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности;

  • готовность и способность учащихся к отстаиванию личного достоинства, собственного мнения, готовность и способность вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны;

  • готовность и способность учащихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества, потребность в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью;

  • принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;

  • неприятие вредных привычек: курения, употребления алкоголя, наркотиков.

Личностные результаты в сфере отношений учащихся к России как к Родине (Отечеству):

  • российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите;

  • уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение к государственным символам (герб, флаг, гимн);

  • формирование уважения к русскому языку как государственному языку Российской Федерации, являющемуся основой российской идентичности и главным фактором национального самоопределения;

  • воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации.

Личностные результаты в сфере отношений учащихся к закону, государству и к гражданскому обществу:

  • гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности, готового к участию в общественной жизни;

  • признание не отчуждаемости основных прав и свобод человека, которые принадлежат каждому от рождения, готовность к осуществлению собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность;

  • мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;

  • интериоризация ценностей демократии и социальной солидарности, готовность к договорному регулированию отношений в группе или социальной организации;

  • готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности;

  • приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к национальному достоинству людей, их чувствам, религиозным убеждениям;

  • готовность обучающихся противостоять идеологии экстремизма, национализма, ксенофобии; коррупции; дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям.

Личностные результаты в сфере отношений учащихся с окружающими людьми:

  • нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;

  • принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению;

  • способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь;

  • формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия и дружелюбия);

  • развитие компетенций сотрудничества со сверстниками, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.

Личностные результаты в сфере отношений учащихся к окружающему миру, живой природе, художественной культуре:

  • мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;

  • готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

  • экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и навыки разумного природопользования;

  • эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта.

Личностные результаты в сфере отношений учащихся к семье и родителям, в том числе подготовка к семейной жизни:

  • ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни;

  • положительный образ семьи, родительства (отцовства и материнства), интериоризация традиционных семейных ценностей.

Личностные результаты в сфере отношения учащихся к труду, в сфере социально-экономических отношений:

  • уважение ко всем формам собственности, готовность к защите своей собственности,

  • осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;

  • готовность учащихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем;

  • потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности;

  • готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

Личностные результаты в сфере физического, психологического, социального и академического благополучия учащихся:

  • физическое, эмоционально-психологическое, социальное благополучие учащихся в жизни Учреждения, ощущение детьми безопасности и психологического комфорта, информационной безопасности.


Метапредметные результаты

Метапредметные результатыпредставлены тремя группами универсальных учебных действий (УУД).

Регулятивные универсальные учебные действия

Выпускник научится:

  • самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;

  • оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;

  • ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;

  • оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;

  • выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;

  • организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;

  • сопоставлять полученный результат деятельности с поставленной заранее целью.

Познавательные универсальные учебные действия

Выпускник научится:

  • искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;

  • критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;

  • использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;

  • находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;

  • выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;

  • выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;

  • менять и удерживать разные позиции в познавательной деятельности.

Коммуникативные универсальные учебные действия

Выпускник научится:

  • осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;

  • при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);

  • координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

  • развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;

  • распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

Предметные результаты


Цели освоения предмета


Для успешного продолжения образования

по специальностям, связанным с прикладным использованием математики


Для обеспечения возможности успешного продолжения образования по специальностям, связанным с осуществлением научной и исследовательской деятельности в области математики и смежных наук

10 класс

Элементы теории множеств и математической логики


- Свободно оперировать понятиями: конечное множество, элемент множества, подмножество, пересечение, объединение и разность множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;

- задавать множества перечислением и характеристическим свойством;

- оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;

- проверять принадлежность элемента множеству;

- находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;

- проводить доказательные рассуждения для обоснования истинности утверждений.

В повседневной жизни и при изучении других предметов:

- использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;

- проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов

Достижение результатов раздела II;

- оперировать понятием определения, основными видами определений, основными видами теорем;

- понимать суть косвенного доказательства;

- оперировать понятиями счетного и несчетного множества;

- применять метод математической индукции для проведения рассуждений и доказательств и при решении задач.

В повседневной жизни и при изучении других предметов:

- использовать теоретико-множественный язык и язык логики для описания реальных процессов и явлений, при решении задач других учебных предметов





Числа и выражения

- Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

- понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;

- переводить числа из одной системы записи (системы счисления) в другую;

- доказывать и использовать признаки делимости суммы и произведения при выполнении вычислений и решении задач;

- выполнять округление рациональных и иррациональных чисел с заданной точностью;

- сравнивать действительные числа разными способами;

- упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;

- находить НОД и НОК разными способами и использовать их при решении задач;

- выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней;

- выполнять стандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений.

В повседневной жизни и при изучении других предметов:

- выполнять и объяснять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;

- записывать, сравнивать, округлять

числовые данные реальных величин с использованием разных систем измерения;

- составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов

Достижение результатов раздела II;

- свободно оперировать числовыми множествами при решении задач;

- понимать причины и основные идеи расширения числовых множеств;

- владеть основными понятиями теории делимости при решении стандартных задач;

- иметь базовые представления о множестве комплексных чисел;

- свободно выполнять тождественные преобразования тригонометрических, логарифмических, степенных выражений;

- владеть формулой бинома Ньютона;

- применять при решении задач теорему о линейном представлении НОД;

- применять при решении задач Китайскую теорему об остатках;

- применять при решении задач Малую теорему Ферма;

- уметь выполнять запись числа в позиционной системе счисления;

- применять при решении задач теоретико-числовые функции: число и сумма делителей, функцию Эйлера;

- применять при решении задач цепные дроби;

- применять при решении задач многочлены с действительными и целыми коэффициентами;

- владеть понятиями приводимый и неприводимый многочлен и применять их при решении задач;

- применять при решении задач Основную теорему алгебры;

- применять при решении задач простейшие функции комплексной переменной как геометрические преобразования






Уравнения и неравенства

- Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;

- решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3-й и 4-й степеней, дробно-рациональные и иррациональные;

- овладеть основными типами показательных, логарифмических, иррациональных, степенных уравнений и неравенств и стандартными методами их решений и применять их при решении задач;

- применять теорему Безу к решению уравнений;

- применять теорему Виета для решения некоторых уравнений степени выше второй;

- понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;

- владеть методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;

- использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;

- решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;

- владеть разными методами доказательства неравенств;

- решать уравнения в целых числах;

- изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами;

- свободно использовать тождественные преобразования при решении уравнений и систем уравнений

В повседневной жизни и при изучении других предметов:

- составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;

- выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;

- составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;

- составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты;

- использовать программные средства при решении отдельных классов уравнений и неравенств

Достижение результатов раздела II;

- свободно определять тип и выбирать метод решения показательных и логарифмических уравнений и неравенств, иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем;

- свободно решать системы линейных уравнений;

- решать основные типы уравнений и неравенств с параметрами;

- применять при решении задач неравенства Коши — Буняковского, Бернулли;

- иметь представление о неравенствах между средними степенными





Функции

- Владеть понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции; уметь применять эти понятия при решении задач;

- владеть понятием степенная функция; строить ее график и уметь применять свойства степенной функции при решении задач;

- владеть понятиями показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач;

- владеть понятием логарифмическая функция; строить ее график и уметь применять свойства логарифмической функции при решении задач;

- владеть понятиями тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач;

- владеть понятием обратная функция; применять это понятие при решении задач;

- применять при решении задач свойства функций: четность, периодичность, ограниченность;

- применять при решении задач преобразования графиков функций;

- владеть понятиями числовая последовательность, арифметическая и геометрическая прогрессия;

- применять при решении задач свойства и признаки арифметической и геометрической прогрессий.

В повседневной жизни и при изучении других учебных предметов:

- определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, точки перегиба, период и т.п.);

- интерпретировать свойства в контексте конкретной практической ситуации;.

- определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)

Достижение результатов раздела II;

- владеть понятием асимптоты и уметь его применять при решении задач;

- применять методы решения простейших дифференциальных уравнений первого и второго порядков



Геометрия


- Владеть геометрическими понятиями при решении задач и проведении математических рассуждений;

- самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новых классах фигур, проводить в несложных случаях классификацию фигур по различным основаниям;

- исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;

- решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;

- уметь формулировать и доказывать геометрические утверждения;

- владеть понятиями стереометрии: призма, параллелепипед, пирамида, тетраэдр;

- иметь представления об аксиомах стереометрии и следствиях из них и уметь применять их при решении задач;

- уметь строить сечения многогранников с использованием различных методов, в том числе и метода следов;

- иметь представление о скрещивающихся прямых в пространстве и уметь находить угол и расстояние между ними;

- применять теоремы о параллельности прямых и плоскостей в пространстве при решении задач;

- уметь применять параллельное проектирование для изображения фигур;

- уметь применять перпендикулярности прямой и плоскости при решении задач;

- владеть понятиями ортогональное проектирование, наклонные и их проекции, уметь применять теорему о трех перпендикулярах при решении задач;

- владеть понятиями расстояние между фигурами в пространстве, общий перпендикуляр двух скрещивающихся прямых и уметь применять их при решении задач;

- владеть понятием угол между прямой и плоскостью и уметь применять его при решении задач;

- владеть понятиями двугранный угол, угол между плоскостями, перпендикулярные плоскости и уметь применять их при решении задач;

- владеть понятиями призма, параллелепипед и применять свойства параллелепипеда при решении задач;

- владеть понятием прямоугольный параллелепипед и применять его при решении задач;

- владеть понятиями пирамида, виды пирамид, элементы правильной пирамиды и уметь применять их при решении задач;

- иметь представление о теореме Эйлера, правильных многогранниках;

- владеть понятием площади поверхностей многогранников и уметь применять его при решении задач;

- владеть понятиями тела вращения (цилиндр, конус, шар и сфера), их сечения и уметь применять их при решении задач;

- владеть понятиями касательные прямые и плоскости и уметь применять их при решении задач;

- иметь представления о вписанных и описанных сферах и уметь применять их при решении задач;

В повседневной жизни и при изучении других предметов:

- составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат

- Иметь представление об аксиоматическом методе;

- владеть понятием геометрические места точек в пространстве и уметь применять их для решения задач;

- уметь применять для решения задач свойства плоских и двугранных углов, трехгранного угла, теоремы косинусов и синусов для трехгранного угла;

- владеть понятием перпендикулярное сечение призмы и уметь применять его при решении задач;

- иметь представление о двойственности правильных многогранников;

- владеть понятиями центральное и параллельное проектирование и применять их при построении сечений многогранников методом проекций;

- иметь представление о развертке многогранника и кратчайшем пути на поверхности многогранника;

- иметь представление о конических сечениях;

- иметь представление о касающихся сферах и комбинации тел вращения и уметь применять их при решении задач;

- применять при решении задач формулу расстояния от точки до плоскости;

- владеть разными способами задания прямой уравнениями и уметь применять при решении задач;

- иметь представление о движениях в пространстве: параллельном переносе, симметрии относительно плоскости, центральной симметрии, повороте относительно прямой, винтовой симметрии, уметь применять их при решении задач;

- иметь представление о трехгранном и многогранном угле и применять свойства плоских углов многогранного угла при решении задач;

- иметь представления о преобразовании подобия, гомотетии и уметь применять их при решении задач;

- уметь решать задачи на плоскости методами стереометрии










11 класс

Элементы математического анализа

- Владеть понятием бесконечно убывающая геометрическая прогрессия и уметь применять его при решении задач;

- применять для решения задач теорию пределов;

- владеть понятиями бесконечно большие и бесконечно малые числовые последовательности и уметь сравнивать бесконечно большие и бесконечно малые последовательности;

- владеть понятиями: производная функции в точке, производная функции;

- вычислять производные элементарных функций и их комбинаций;

- исследовать функции на монотонность и экстремумы;

- строить графики и применять к решению задач, в том числе с параметром;

- владеть понятием касательная к графику функции и уметь применять его при решении задач;

- владеть понятиями первообразная функция, определенный интеграл;

- применять теорему Ньютона–Лейбница и ее следствия для решения задач.

В повседневной жизни и при изучении других учебных предметов:

- решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик процессов;

- интерпретировать полученные результаты

- Достижение результатов раздела II;

- свободно владеть стандартным аппаратом математического анализа для вычисления производных функции одной переменной;

- свободно применять аппарат математического анализа для исследования функций и построения графиков, в том числе исследования на выпуклость;

- оперировать понятием первообразной функции для решения задач;

- овладеть основными сведениями об интеграле Ньютона–Лейбница и его простейших применениях;

- оперировать в стандартных ситуациях производными высших порядков;

- уметь применять при решении задач свойства непрерывных функций;

- уметь применять при решении задач теоремы Вейерштрасса;

- уметь выполнять приближенные вычисления (методы решения уравнений, вычисления определенного интеграла);

- уметь применять приложение производной и определенного интеграла к решению задач естествознания;

- владеть понятиями вторая производная, выпуклость графика функции и уметь исследовать функцию на выпуклость

Статистика и теория вероятностей, логика и комбинаторика


- Оперировать основными описательными характеристиками числового набора, понятием генеральная совокупность и выборкой из нее;

- оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей, вычислять вероятности событий на основе подсчета числа исходов;

- владеть основными понятиями комбинаторики и уметь их применять при решении задач;

- иметь представление об основах теории вероятностей;

- иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин;

- иметь представление о математическом ожидании и дисперсии случайных величин;

- иметь представление о совместных распределениях случайных величин;

- понимать суть закона больших чисел и выборочного метода измерения вероятностей;

- иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;

- иметь представление о корреляции случайных величин.

В повседневной жизни и при изучении других предметов:

- вычислять или оценивать вероятности событий в реальной жизни;

- выбирать методы подходящего представления и обработки данных





- Достижение результатов раздела II;

- иметь представление о центральной предельной теореме;

- иметь представление о выборочном коэффициенте корреляции и линейной регрессии;

- иметь представление о статистических гипотезах и проверке статистической гипотезы, о статистике критерия и ее уровне значимости;

- иметь представление о связи эмпирических и теоретических распределений;

- иметь представление о кодировании, двоичной записи, двоичном дереве;

- владеть основными понятиями теории графов (граф, вершина, ребро, степень вершины, путь в графе) и уметь применять их при решении задач;

- иметь представление о деревьях и уметь применять при решении задач;

- владеть понятием связность и уметь применять компоненты связности при решении задач;

- уметь осуществлять пути по ребрам, обходы ребер и вершин графа;

- иметь представление об эйлеровом и гамильтоновом пути, иметь представление о трудности задачи нахождения гамильтонова пути;

- владеть понятиями конечные и счетные множества и уметь их применять при решении задач;

- уметь применять метод математической индукции;

- уметь применять принцип Дирихле при решении задач

Текстовые задачи


- Решать разные задачи повышенной трудности;

- анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы;

- строить модель решения задачи, проводить доказательные рассуждения при решении задачи;

- решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;

- анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;

- переводить при решении задачи информацию из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы.

В повседневной жизни и при изучении других предметов:

- решать практические задачи и задачи из других предметов

- Достижение результатов раздела II


Геометрия

- Владеть понятиями объем, объемы многогранников, тел вращения и применять их при решении задач;

- иметь представление о развертке цилиндра и конуса, площади поверхности цилиндра и конуса, уметь применять их при решении задач;

- иметь представление о площади сферы и уметь применять его при решении задач;

- уметь решать задачи на комбинации многогранников и тел вращения;

- иметь представление о подобии в пространстве и уметь решать задачи на отношение объемов и площадей поверхностей подобных фигур.

В повседневной жизни и при изучении других предметов:

- составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат

- Применять при решении задач и доказательстве теорем векторный метод и метод координат;

- иметь представление об аксиомах объема, применять формулы объемов прямоугольного параллелепипеда, призмы и пирамиды, тетраэдра при решении задач;

- применять теоремы об отношениях объемов при решении задач;

- применять интеграл для вычисления объемов и поверхностей тел вращения, вычисления площади сферического пояса и объема шарового слоя;

- иметь представление о площади ортогональной проекции;

- уметь применять формулы объемов при решении задач




Векторы и координаты в пространстве


- Владеть понятиями векторы и их координаты;

- уметь выполнять операции над векторами;

- использовать скалярное произведение векторов при решении задач;

- применять уравнение плоскости, формулу расстояния между точками, уравнение сферы при решении задач;

- применять векторы и метод координат в пространстве при решении задач


- Достижение результатов раздела II;

- находить объем параллелепипеда и тетраэдра, заданных координатами своих вершин;

- задавать прямую в пространстве;

- находить расстояние от точки до плоскости в системе координат;

- находить расстояние между скрещивающимися прямыми, заданными в системе координат

История математики


- Иметь представление о вкладе выдающихся математиков в развитие науки;

- понимать роль математики в развитии России

Достижение результатов раздела II


Методы математики


- Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;

- применять основные методы решения математических задач;

- на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;

- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач;

- пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов

- Достижение результатов раздела II;

- применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики)




 Содержание учебного предмета


Алгебра и начала анализа

Повторение. Решение задач с использованием свойств чисел и систем счисления, делимости, долей и частей, процентов, модулей чисел. Решение задач с использованием свойств степеней и корней, многочленов, преобразований многочленов и дробно-рациональных выражений. Решение задач с использованием градусной меры угла. Модуль числа и его свойства. Решение задач на движение и совместную работу, смеси и сплавы с помощью линейных, квадратных и дробно-рациональных уравнений и их систем. Решение задач с помощью числовых неравенств и систем неравенств с одной переменной, с применением изображения числовых промежутков. Решение задач с использованием числовых функций и их графиков. Использование свойств и графиков линейных и квадратичных функций, обратной пропорциональности и функции hello_html_m474286c5.gif. Графическое решение уравнений и неравенств. Использование операций над множествами и высказываниями. Использование неравенств и систем неравенств с одной переменной, числовых промежутков, их объединений и пересечений. Применение при решении задач свойств арифметической и геометрической прогрессии, суммирования бесконечной сходящейся геометрической прогрессии.

Множества (числовые, геометрических фигур). Характеристическое свойство, элемент множества, пустое, конечное, бесконечное множество. Способы задания множеств Подмножество. Отношения принадлежности, включения, равенства. Операции над множествами. Круги Эйлера. Конечные и бесконечные, счетные и несчетные множества.

Истинные и ложные высказывания, операции над высказываниями. Алгебра высказываний. Связь высказываний с множествами. Кванторы существования и всеобщности.

Законы логики. Основные логические правила. Решение логических задач с использованием кругов Эйлера, основных логических правил.

Умозаключения. Обоснования и доказательство в математике. Теоремы. Виды математических утверждений. Виды доказательств. Математическая индукция. Утверждения: обратное данному, противоположное, обратное противоположному данному. Признак и свойство, необходимые и достаточные условия.

Основная теорема арифметики. Остатки и сравнения. Алгоритм Евклида. Китайская теорема об остатках. Малая теорема Ферма. q-ичные системы счисления. Функция Эйлера, число и сумма делителей натурального числа.

Радианная мера угла, тригонометрическая окружность. Тригонометрические функции чисел и углов. Формулы приведения, сложения тригонометрических функций, формулы двойного и половинного аргумента. Преобразование суммы, разности в произведение тригонометрических функций, и наоборот.

Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значение функции. Периодические функции и наименьший период. Четные и нечетные функции. Функции «дробная часть числа» hello_html_m35a0edcd.gif и «целая часть числа» hello_html_6f51ab98.gif.

Тригонометрические функции числового аргумента hello_html_m385cda04.gif, hello_html_72dc429c.gif, hello_html_2b097433.gif, hello_html_m1962725c.gif. Свойства и графики тригонометрических функций.

Обратные тригонометрические функции, их главные значения, свойства и графики. Тригонометрические уравнения. Однородные тригонометрические уравнения. Решение простейших тригонометрических неравенств. Простейшие системы тригонометрических уравнений.

Степень с действительным показателем, свойства степени. Простейшие показательные уравнения и неравенства. Показательная функция и ее свойства и график. Число hello_html_13a9c2a3.gif и функция hello_html_2518b639.gif.

Логарифм, свойства логарифма. Десятичный и натуральный логарифм. Преобразование логарифмических выражений. Логарифмические уравнения и неравенства. Логарифмическая функция и ее свойства и график.

Степенная функция и ее свойства и график. Иррациональные уравнения.

Первичные представления о множестве комплексных чисел. Действия с комплексными числами. Комплексно сопряженные числа. Модуль и аргумент числа. Тригонометрическая форма комплексного числа. Решение уравнений в комплексных числах.

Метод интервалов для решения неравенств. Преобразования графиков функций: сдвиг, умножение на число, отражение относительно координатных осей. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля.

Системы показательных, логарифмических и иррациональных уравнений. Системы показательных, логарифмических и иррациональных неравенств.

Взаимно обратные функции. Графики взаимно обратных функций.

Уравнения, системы уравнений с параметром.

Формула Бинома Ньютона. Решение уравнений степени выше 2 специальных видов. Теорема Виета, теорема Безу. Приводимые и неприводимые многочлены. Основная теорема алгебры. Симметрические многочлены. Целочисленные и целозначные многочлены.

Диофантовы уравнения. Цепные дроби. Теорема Ферма о сумме квадратов.

Суммы и ряды, методы суммирования и признаки сходимости.

Теоремы о приближении действительных чисел рациональными.

Множества на координатной плоскости.

Неравенство Коши–Буняковского, неравенство Йенсена, неравенства о средних.

Понятие предела функции в точке. Понятие предела функции в бесконечности. Асимптоты графика функции. Сравнение бесконечно малых и бесконечно больших. Непрерывность функции. Свойства непрерывных функций. Теорема Вейерштрасса.

Дифференцируемость функции. Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Применение производной в физике. Производные элементарных функций. Правила дифференцирования.

Вторая производная, ее геометрический и физический смысл.

Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач. Нахождение экстремумов функций нескольких переменных.

Первообразная. Неопределенный интеграл. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Определенный интеграл. Вычисление площадей плоских фигур и объемов тел вращения с помощью интеграла.

Методы решения функциональных уравнений и неравенств.


Геометрия

Повторение. Решение задач с использованием свойств фигур на плоскости. Решение задач на доказательство и построение контрпримеров. Применение простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырехугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисления длин и площадей. Решение задач с помощью векторов и координат.

Наглядная стереометрия. Призма, параллелепипед, пирамида, тетраэдр.

Основные понятия геометрии в пространстве. Аксиомы стереометрии и следствия из них. Понятие об аксиоматическом методе.

Теорема Менелая для тетраэдра. Построение сечений многогранников методом следов. Центральное проектирование. Построение сечений многогранников методом проекций.

Скрещивающиеся прямые в пространстве. Угол между ними. Методы нахождения расстояний между скрещивающимися прямыми.

Теоремы о параллельности прямых и плоскостей в пространстве. Параллельное проектирование и изображение фигур. Геометрические места точек в пространстве.

Перпендикулярность прямой и плоскости. Ортогональное проектирование. Наклонные и проекции. Теорема о трех перпендикулярах.

Виды тетраэдров. Ортоцентрический тетраэдр, каркасный тетраэдр, равногранный тетраэдр. Прямоугольный тетраэдр. Медианы и бимедианы тетраэдра.

Достраивание тетраэдра до параллелепипеда.

Расстояния между фигурами в пространстве. Общий перпендикуляр двух скрещивающихся прямых.

Углы в пространстве. Перпендикулярные плоскости. Площадь ортогональной проекции. Перпендикулярное сечение призмы. Трехгранный и многогранный угол. Свойства плоских углов многогранного угла. Свойства плоских и двугранных углов трехгранного угла. Теоремы косинусов и синусов для трехгранного угла.

Виды многогранников. Развертки многогранника. Кратчайшие пути на поверхности многогранника.

Теорема Эйлера. Правильные многогранники. Двойственность правильных многогранников.

Призма. Параллелепипед. Свойства параллелепипеда. Прямоугольный параллелепипед. Наклонные призмы.

Пирамида. Виды пирамид. Элементы правильной пирамиды. Пирамиды с равнонаклоненными ребрами и гранями, их основные свойства.

Площади поверхностей многогранников.

Тела вращения: цилиндр, конус, шар и сфера. Сечения цилиндра, конуса и шара. Шаровой сегмент, шаровой слой, шаровой сектор (конус).

Усеченная пирамида и усеченный конус.

Элементы сферической геометрии. Конические сечения.

Касательные прямые и плоскости. Вписанные и описанные сферы. Касающиеся сферы. Комбинации тел вращения.

Векторы и координаты. Сумма векторов, умножение вектора на число. Угол между векторами. Скалярное произведение.

Уравнение плоскости. Формула расстояния между точками. Уравнение сферы. Формула расстояния от точки до плоскости. Способы задания прямой уравнениями.

Решение задач и доказательство теорем с помощью векторов и методом координат. Элементы геометрии масс.

Понятие объема. Объемы многогранников. Объемы тел вращения. Аксиомы объема. Вывод формул объемов прямоугольного параллелепипеда, призмы и пирамиды. Формулы для нахождения объема тетраэдра. Теоремы об отношениях объемов.

Приложения интеграла к вычислению объемов и поверхностей тел вращения. Площадь сферического пояса. Объем шарового слоя. Применение объемов при решении задач.

Площадь сферы.

Развертка цилиндра и конуса. Площадь поверхности цилиндра и конуса.

Комбинации многогранников и тел вращения.

Подобие в пространстве. Отношение объемов и площадей поверхностей подобных фигур.

Движения в пространстве: параллельный перенос, симметрия относительно плоскости, центральная симметрия, поворот относительно прямой.

Преобразование подобия, гомотетия. Решение задач на плоскости с использованием стереометрических методов.


Вероятность и статистика, логика, теория графов и комбинаторика

Повторение. Использование таблиц и диаграмм для представления данных. Решение задач на применение описательных характеристик числовых наборов: средних, наибольшего и наименьшего значения, размаха, дисперсии и стандартного отклонения. Вычисление частот и вероятностей событий. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Использование комбинаторики. Вычисление вероятностей независимых событий. Использование формулы сложения вероятностей, диаграмм Эйлера, дерева вероятностей, формулы Бернулли.

Вероятностное пространство. Аксиомы теории вероятностей.

Условная вероятность. Правило умножения вероятностей. Формула полной вероятности. Формула Байеса.

Дискретные случайные величины и распределения. Совместные распределения. Распределение суммы и произведения независимых случайных величин. Математическое ожидание и дисперсия случайной величины. Математическое ожидание и дисперсия суммы случайных величин.

Бинарная случайная величина, распределение Бернулли. Геометрическое распределение. Биномиальное распределение и его свойства. Гипергеометрическое распределение и его свойства.

Непрерывные случайные величины. Плотность вероятности. Функция распределения. Равномерное распределение.

Показательное распределение, его параметры.

Распределение Пуассона и его применение. Нормальное распределение. Функция Лапласа. Параметры нормального распределения. Примеры случайных величин, подчиненных нормальному закону (погрешность измерений, рост человека). Центральная предельная теорема.

Неравенство Чебышева. Теорема Чебышева и теорема Бернулли. Закон больших чисел. Выборочный метод измерения вероятностей. Роль закона больших чисел в науке, природе и обществе.

Ковариация двух случайных величин. Понятие о коэффициенте корреляции. Совместные наблюдения двух случайных величин. Выборочный коэффициент корреляции. Линейная регрессия.

Статистическая гипотеза. Статистика критерия и ее уровень значимости. Проверка простейших гипотез. Эмпирические распределения и их связь с теоретическими распределениями. Ранговая корреляция.

Построение соответствий. Инъективные и сюръективные соответствия. Биекции. Дискретная непрерывность. Принцип Дирихле.

Кодирование. Двоичная запись.

Основные понятия теории графов. Деревья. Двоичное дерево. Связность. Компоненты связности. Пути на графе. Эйлеровы и Гамильтоновы пути.


Тематическое планирование

10 класс


Глава I. Действительные числа

1.Целые и рациональные числа.

2.Действительные числа.

3.Бесконечно убывающая геометрическая прогрессия.

4.Арифметический корень натуральной степени.

5.Степень с рациональным и действительным показателями

18

Введение

1.Предмет стереометрии.

2.Аксиомы стереометрии.

. 3.Некоторые следствия из аксиом

3

Глава 1. Параллельность прямых и плоскостей

§1.Параллельность прямых, прямой и плоскости

4.Параллельные прямые в пространстве.

5.Параллельность трёх прямых.

6.Параллельность прямой и плоскости.

§ 2. Взаимное расположение прямых в пространстве. Угол между двумя прямыми

7.Скрещивающиеся прямые

8.Углы с сонаправленными сторонами

9.Угол между прямыми

§ 3. Параллельность плоскостей

10.Параллельные плоскости

11.Свойства параллельных плоскостей

§ 4.Тетраэдр и параллелепипед

12.Тетраэдр

13.Параллелепипед

14.Задачи на построение сечений

17

Глава II. Степенная функция

§6. Степенная функция, её свойства и график.

§7. Взаимно обратные функции.

§8.Равносильные уравнения и неравенства.

§9. Иррациональные уравнения

18

Глава III. Показательная функция

§11. Показательная функция, её свойства и график.

§12.Показательные уравнения.

13.Показательные неравенства.

§14. Системы показательных уравнений и неравенств

12

Перпендикулярность прямых и плоскостей

§1. Перпендикулярность прямой и плоскости

15.Перпендикулярные прямые в пространстве

16.Параллельные прямые, перпендикулярные к плоскости

17.Признак перпендикулярности прямой и плоскости

18.Теорема о прямой, перпендикулярной к плоскости.

§2. Перпендикуляр и наклонные. Угол между прямой и плоскостью

19.Расстояние от точки до плоскости.

20.Теорема о трёх перпендикулярах.

21.Угол между прямой и плоскостью.

§3Двугранный угол. Перпендикулярность плоскостей

22.Двугранный угол.

23.Признак перпендикулярности двух плоскостей

24.Прямоугольный параллелепипед

25.Трёхгранный угол

26.Многогранный угол

17

Глава IV. Логарифмическая функция

§15.Логарифмы.

§16. Свойства логарифмов.

§17. Десятичные и натуральные логарифмы.

§18. Логарифмическая функция, её свойства и график.

§19.Логарифмические уравнения.

§20.Логарифмические неравенства

19

Многогранники

§1. Понятие многогранника. Призма

27.Понятие многогранника

28.Геометрическое тело

29.Теорема Эйлера

30.Призма

31.Пространственная теорема Пифагора

§2. Пирамида

32.Пирамида

33.Правильная пирамида

34.Усечённая пирамида

§3. Правильные многогранники

35.Симметрия в пространстве

36.Понятие правильного многогранника

37.Элементы симметрии правильных многогранников

14

Глава V. Тригонометрические формулы

§21.Радианная мера угла.

§22. Поворот точки вокруг начала координат.

§23. Определение синуса, косинуса и тангенса.

§24. Знаки синуса, косинуса и тангенса.

§25. Зависимость между синусом, косинусом и тангенсом одного и того же угла.

§26.Тригонометрические тождества.

§27. Синус, косинус и тангенс углов α и - α.

§28. Формулы сложения.

§29. Синус, косинус и тангенс двойного угла

§30.Синус, косинус и тангенс половинного угла

§31. Формулы приведения.

§32. Сумма и разность синусов. Сумма и разность косинусов

27

Тригонометрические уравнения

§33. Уравнение cos x = a

§34. Уравнение sin x = a

§35. Уравнение tgx = a.

§36. Решение тригонометрических уравнений

§37. Примеры решения простейших тригонометрических неравенств

18

Повторение. Решение упражнений

11

ИТОГО

174

11 класс


Тригонометрические функции

 §38.Область определения и множество значений тригонометрических функций

§39.Чётность, нечётность, периодичность тригонометрических функций

§40. Свойство функции y = cos x и её график

§41. Свойство функции y = sin x и её график

§42. Свойство функции y = tg x и её график

§43*. Обратные тригонометрические функции

15

Глава VI. Цилиндр, конус и шар

§1. Цилиндр

59.Понятие цилиндра

60.Площадь поверхности цилиндра

§2. Конус

61.Понятие конуса

62.Площадь поверхности конуса

63.Усечённый конус

§3. Сфера

64.Сфера и шар

65.Взаимное расположение сферы и плоскости

66.Касательная плоскость к сфере Площадь сферы

67.Взаимное расположение сферы и прямой

68.Сфера, вписанная в цилиндрическую поверхность

69.Сфера, вписанная в коническую поверхность

70.Сечения цилиндрической поверхности

80. Сечения конической поверхности

16

Глава VIII. Производная и её геометрический смысл

§44.Производная

§45 .Производная степенной функции

§46 .Правила дифференцирования

§47 .Производные некоторых элементарных функций

§48 .Геометрический смысл производной

16

Глава VII. Объёмы тел

§1. Объём прямоугольного параллелепипеда

74.Понятие объёма

75.Объём прямоугольно параллелепипеда

§2. Объёмы прямой призмы и цилиндра

76.Объём прямой призмы

77.Объём цилиндра

§3. Объёмы наклонной призмы, пирамиды и конуса

78.Вычисление объёмов тел с помощью интеграла

79.Объём наклонной призмы

80.Объём пирамиды

81.Объём конуса

§4. Объём шара и площадь сферы

82.Объём шара

83.Объёмы шарового сегмента, шарового слоя и шарового сектора

84.Площадь сферы

15

Глава IХ. Применение производной к исследованию функций

§49. Возрастание и убывание функции

§50. Экстремумы функции

§51. Применение производной к построению графиков функций

§52 .Наибольшее и наименьшее значения функции

§53*. Выпуклость графика функции, точки перегиба

§54.Урок обобщения и систематизации знаний

12

Глава IV. Векторы в пространстве

§1. Понятие вектора в пространстве

38. Понятие вектора

39. Равенство векторов

§2. Сложение и вычитание векторов. Умножение вектора на число

40. Сложение и вычитание векторов

41. Сумма нескольких векторов

42. Умножение вектора на число

§3. Компланарные векторы

43. Компланарные векторы

44. Правило параллелепипеда

45. Разложение вектора по трём некомпланарным векторам

12

Глава Х. Интеграл

§54. Первообразная

§55. Правила нахождения первообразных

§56. Площадь криволинейной трапеции и интеграл

§57. Вычисление интегралов

§58. Вычисление площадей с помощью интегралов

§59. Применение производной и интеграла к решению практических задач

10

Глава V. Метод координат в пространстве. Движения

§1. Координаты точки и координаты вектора

46.Прямоугольная система координат в пространстве

47.Координаты вектора

48.Связь между координатами векторов и координатами точек

49.Простейшие задачи в координатах

65.Уравнение сферы

§2. Скалярное произведение векторов

50.Угол между векторами

51.Скалярное произведение векторов

52.Вычисление углов между прямыми и плоскостями

53.Уравнение плоскости

§3. Движения

54.Центральная симметрия

55.Осевая симметрия

56.Зеркальная симметрия

57.Параллельный перенос

58.Преобразование подобия

16

Глава ХI. Комбинаторика

60 Правило произведения

61 Перестановки

62 Размещения

63 Сочетания и их свойства

64 Бином Ньютона

10

Глава XII. Элементы теории вероятностей

§65. Cобытия

§66. Комбинация событий. Противоположное событие

§67. Вероятность события

§68. Сложение вероятностей

§69. Независимые события. Умножение вероятностей

§70.Статистическая вероятность

11

Глава XIII. Статистика

§71.Случайные величины

§72. Центральные тенденции

§73. Меры разброса

8

Повторение

33

ИТОГО

174








  • Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
    Пожаловаться на материал
Скачать материал
Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:
также Вы можете выбрать тип материала:
Проверен экспертом
Общая информация
Скачать материал

Вам будут интересны эти курсы:

Курс повышения квалификации «Формирование компетенций межкультурной коммуникации в условиях реализации ФГОС»
Курс повышения квалификации «Этика делового общения»
Курс повышения квалификации «Организация практики студентов в соответствии с требованиями ФГОС медицинских направлений подготовки»
Курс повышения квалификации «Психодинамический подход в консультировании»
Курс повышения квалификации «Методы и инструменты современного моделирования»
Курс профессиональной переподготовки «Управление сервисами информационных технологий»
Курс профессиональной переподготовки «Риск-менеджмент организации: организация эффективной работы системы управления рисками»
Курс профессиональной переподготовки «Уголовно-правовые дисциплины: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Методика организации, руководства и координации музейной деятельности»
Курс профессиональной переподготовки «Организация деятельности по водоотведению и очистке сточных вод»
Курс профессиональной переподготовки «Эксплуатация и обслуживание общего имущества многоквартирного дома»
Курс профессиональной переподготовки «Организация маркетинговой деятельности»
Курс повышения квалификации «Информационная этика и право»

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.