Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по алгебре 7-9

Рабочая программа по алгебре 7-9

  • Математика

Поделитесь материалом с коллегами:

посёлок Горняцкий Белокалитвинский район Ростовская область

Муниципальное бюджетное образовательное учреждение

средняя общеобразовательная школа №11

"Утверждаю"

Директор МБОУ СОШ№11

Приказ от -------------- №----

__________ Пигарева В.Н



РАБОЧАЯ ПРОГРАММА

по алгебре



Уровень общего образования: основное общее образование

Класс: 7 – 9

Количество часов: 105, 105, 102

Учитель: Мхитарян С. А.





















2015 –

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по алгебре ориентирована на учащихся 7 – 9 классов и реализуется на основе следующих нормативных документов:

  • Закона «Об образовании в Российской Федерации» (от 26.12.2012 №273 – ФЗ)

  • Федеральный компонент государственного стандарта основного общего, среднего общего образования по математике, утвержденного приказом Министерства образования России от 05.03. 2004г. №1089. Базовый уровень;

  • Фундаментальное ядро содержания общего образования/ под редакцией В.В. Козлова, А.М. Кондакова, 4-е издание, доработанное. – М. «Просвещение», 2011;

  • Требования к результатам обучения, представленных в Стандарте основного общего образования;

  • Алгебра. Сборник рабочих программ 7-9 классы: пособие для учителей общеобразоват. учреждений / (составитель Т.А. Бурмистрова). – М.: Просвещение, 2011.



Цель изучения математики на базовом уровне основного общего образования направлено на:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей.

Для достижения цели необходимо выполнить следующие задачи:

  • развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

  • изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  • развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.




ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА

При изучении курса математики на базовом уровне продолжаются и получают развитие основные содержательные линии: арифметика; алгебра; функции; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Арифметика служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами; приобретению практических навыков, необходимых в повседневной жизни.

Алгебра способствует формированию у учащихся математического аппарата для решения задач из разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символьных форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству.

Функции – как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

Элементы логики, комбинаторики, статистики и теории вероятностей – становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.

Место предмета в базисном учебном плане

Базисный учебный (образовательный) план на изучение алгебры в 7-9 классах основной школы отводит 3 часа в неделю в течение каждого года обучения, всего 312 уроков. Учебное время может быть увеличено до 4 уроков в неделю за счет вариативной части Базисного плана.





ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Личностные:

  1. сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений;

  2. сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

  3. сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

  4. умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  5. представление математической науке как сфере человеческой деятельности, представлять этапы ее развития и ее значимость для развития цивилизации;

  6. критичность мышления, умение распознавать логически некорректные высказывания, критически мыслить,отличать гипотезу от факта;

  7. креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;

  8. умение контролировать процесс и результат учебной математической деятельности;

  9. способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

Метапредметные:

  1. умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

  2. умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;

  3. умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;

  4. осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовитых связей;

  5. умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

  6. умение создавать, применять и преобразовывать знаковосимволические средства, модели и схемы для решения учебных и познавательных задач;

  7. умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение;

  8. сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий;

  9. первоначальные представления об идеях и методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

  10. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  11. умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  12. умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

  13. умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  14. умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  15. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  16. умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  17. умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Предметные:

  1. умение работать с математическим текстом, точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;

  2. владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  3. умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

  4. умение пользоваться математическими формулами и самостоятельно составлять формулы зависимости между величинами на основе обобщения частных случаев и эксперимента;

  5. умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;

  6. овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;

  7. овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий;

  8. умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.




СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

Арифметика

Рациональные числа. Расширение множества натуральных чисел до множества целых чисел. Множества целых чисел до множества рациональных. Рациональное число как отношениеhello_html_4b823660.gif , где m – целое число, n – натуральное число. Степень с целым показателем. Действительные числа. Квадратный корень из числа. Корень третьей степени. Запись корней с помощью степени с дробным показателем. Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел. Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел. Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки. Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя – степени десяти в записи числа. Приближенное значение величины, точность приближения. Прикидка и оценка результатов вычислений.

Алгебра

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и её свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен; разложение квадратного трехчлена на множители. Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и её свойства. Рациональные выражения и их преобразования. Доказательство тождеств. Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и их вычислениям. Уравнения. Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвертой степеней. Решение дробно-рациональных уравнений. Уравнения с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах. Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными. Решение текстовых задач алгебраическим способом. Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными. Неравенства. Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.

Функции

Основные понятия. Зависимость между величинами. Понятие функции. Область определения и множество значения функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы. Числовые функции. Функция описывающая прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, её график и свойства. Квадратичная функция, её график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций hello_html_4a26b265.gif, hello_html_m6b35e87d.gif, hello_html_m3c871143.gif. Числовые последовательности. Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой п-го члена. Арифметическая и геометрическая прогрессии. Формула п-го члена арифметической и геометрической прогрессий, суммы первых п-членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

Вероятность и статистика

Описательная статистика. Представление данных в виде таблиц, диограммм графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании. Случайные события и вероятность. Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности и противоположных событий. Независимые события. Умножение вероятностей. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности. Комбинаторика. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.

Логика и множества

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера – Венна. Элементы логики. Понятие о равносильности, следовании, употребление логических связок если…, то…, в том и только в том случае, логические связки и, или.









Тематическое планирование

алгебра

7 класс (105часа, 3 ч. в неделю)

Тема

Кол-во часов

Основной вид учебной деятельности


Отрабатываемые УУД (Универсальные учебные действия)

1

Повторение курса математики 5-6 классов

3

Постановка цели и задач на при повторении материала. Планирование учебной деятельности на уроке и дома. Подведение итога, коррекция знаний. Самоконтроль.

Актуализация знаний за курс математики 5 – 6 классов

2

Алгебраические выражения

9

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Вычисление значений числовых выражений, применение свойств и правил арифметических действий, выбор рациональных способов вычислений.

Чтение выражений, формул, правил, записанных на математическом языке, перевод словесных формулировок на математический язык. Использование символики для записи математических утверждений.

Работа в паре и группе. Участие в деловой игре.

Описание реальных ситуаций с помощью математических моделей. Планирование хода решения задач с использованием трех этапов математического моделирования. Прогнозирование результата решения, оценка реальности полученного ответа.


Умение составлять числовые и буквенные выражения, записывать математические свойства, правила, формулы на математическом языке; осуществлять числовые подстановки в алгебраические выражения и формулы и выполнять соответствующие вычисления; выражать из формулы одну переменную через другие; находить область допустимых значений переменных в выражении.

УУД

Умение ставить цели, планировать свою деятельность, осуществлять самоконтроль и самооценку. Умение находить информацию в учебнике по заданной теме. Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение взаимодействовать с товарищами по классу, работать в паре и группе

3

Уравнения с одним неизвестным

8

Применение алгоритма при решении линейного уравнения.

Изображение чисел и числовых промежутков на числовой прямой.

Чтение учебника, извлечение информации в соответствии с темой урока и заданием учителя. Выполнение упражнений по правилу, образцу и алгоритму.

Подведение итогов. Самооценка знаний.

Умение распознавать и решать линейные уравнения и уравнения, сводящиеся к ним; решать текстовые задачи алгебраическим методом: описывать реальную ситуацию в виде математической модели – линейного уравнения, решать полученное уравнение и интерпретировать результат. Умение изображать числа и числовые промежутки на координатной прямой, определять принадлежность точки данному числовому промежутку.

УУД

Умение ставить цели, планировать свою деятельность, осуществлять самоконтроль и самооценку. Умение находить информацию в учебнике по заданной теме. Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение взаимодействовать с товарищами по классу, работать в паре и группе


4

Одночлены и многочлены

Понятие степени с натуральным показателем и ее свойства. Умножение и деление степеней с одинаковым показателем. Степень с нулевым показателем.









































Понятие одночлена. Стандартный вид одночлена. Сложение и вычитание одночленов. Умножение одночленов. Возведение одночленов в натуральную степень. Деление одночлена на одночлен.

























































Понятие многочлена. Сложение и вычитание многочленов. Умножение многочлена на одночлен. Умножение многочлена на многочлен. Формулы сокращенного умножения. Деление многочлена на одночлен.

16

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Чтение и запись степени выражения, свойств степени на математическом языке.

Составление таблицы степеней.

Изучение по учебнику этапов теоретического исследования. Самостоятельное проведение исследования.

Доказательство свойств степени.

Конструирование предложений с помощью связок «если…, то…». Работа в паре.

Применение определения и свойств степени при решении простейших уравнений, моделирование реальных ситуаций, приводящих к простейшему степенному уравнению. Мини проект.

Осуществление самоконтроля решения, поиск и устранение ошибок.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Самостоятельное чтение учебника с целью поиска информации на заданную тему.

Выполнение алгебраических преобразований с одночленами, пошаговый контроль правильности выполнения алгоритма преобразования. Работа в паре.

Сравнение двух дробей по виду и выявление, которая из них является одночленом, а которая нет, обоснование вывода.

Составление алгоритма приведения одночлена к стандартному виду, сложения одночленов. Работа в паре.

Выполнение действий с одночленами.

Описание реальных ситуаций с помощью модели (уравнения) с подобными одночленами. Решение задач в три этапа математического моделирования. Мини проект.

Наблюдение и вывод, в каком случае один одночлен можно разделить на другой одночлен и как это сделать. Выполнение заданий, связанных с выявлением некорректных высказываний.

Самоконтроль выполнения действий и преобразований с одночленами, поиск и устранение ошибок.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.



Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Извлечение информации из учебника, связанной с изучением нового материала.

Выполнение действий с многочленами по правилам. Работа в паре.

Описание реальных ситуаций с помощью математической модели, представляющей собой многочлены. Решение задач в три этапа математического моделирования. Мини проект.

Вывод формул сокращенного умножения. Чтение их и запись на математическом языке. Применение геометрической модели, иллюстрирующей вывод формул разности квадратов и квадрата суммы и разности.

Выполнение преобразований многочленов, пошаговый контроль правильности и полноты выполнения алгоритма. Поиск, обнаружение и устранение арифметических и алгебраических ошибок.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.


Знание определения степени с натуральным показателем и ее свойств, умение вычислять степень числа. Знание табличных значений степеней 2, 3, 5, 10. Понятие степени с нулевым показателем. Умение применять свойства степени для преобразования выражений и вычислений. Умение конструировать математические предложения с помощью связок «если…, то…», воспроизводить несложные доказательства изученных теорем о свойствах степени с натуральным показателем. Умение решать простейшие уравнения, используя определение степени с неотрицательным целым показателем.

УУД

Умение ставить цели, планировать свою деятельность, прогнозировать результат, осуществлять самоконтроль и самооценку.

Умение читать математический текст и находить информацию в учебнике по заданной теме. Умение на наглядно-интуитивном уровне проводить наблюдение, исследование, анализ, делать выводы. Первичное умение проводить доказательство утверждения. Умение выполнять действия по правилу и образцу. Умение осуществлять мини проектную деятельность.

Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение взаимодействовать с товарищами по классу в деловой ситуации, работать в паре и группе

Понимание, что такое одночлен. Умение записывать одночлены в стандартном виде, умение приводить одночлены к стандартному виду. Умение выполнять сложение и вычитание подобных одночленов, умножение одночленов, возведение одночлена в степень, деление одночлена на одночлен в корректных случаях.

УУД

Умение ставить цели, планировать свою деятельность, прогнозировать результат, осуществлять самоконтроль и самооценку.

Умение читать математический текст и находить информацию в учебнике по заданной теме. Умение проводить наблюдение, сравнивать, анализировать ситуацию, делать выводы. Умение работать по правилу и образцу. Умение осуществлять мини проектную деятельность.

Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение взаимодействовать с товарищами по классу в деловой ситуации, работать в паре и группе.



































Понимание, что такое многочлен. Умение записывать многочлены в стандартном виде, умение выполнять сложение и вычитание многочленов, умножение многочлена на одночлен, умножение многочлена на многочлен. Умение применять правило умножения многочленов для выведения формул разности квадратов, квадрата двучлена и суммы (разности) кубов. Умение применять формулы сокращенного умножения для преобразования алгебраических выражений. Умение выполнять деление многочлена на одночлен, если такое деление корректно.

УУД

Умение ставить учебные цели и задачи, планировать свою деятельность, прогнозировать результат, осуществлять самоконтроль и самооценку, преодолевать трудности, корректировать свои знания.

Умение читать математический текст и находить информацию в учебнике по заданной теме. Умение работать по аналогии, образцу, алгоритму, формуле. Умение сравнивать, обобщать, делать выводы, проводить обоснованный вывод формул. Умение осуществлять мини проектную деятельность.

Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение взаимодействовать с товарищами по классу в деловой ситуации, работать в паре и группе.

5

Разложение многочленов на множители

Понятие о разложении многочлена на множители и его необходимости. Вынесение общего множителя за скобки. Способ группировки. Разложение многочлена на множители с помощью формул сокращенного умножения и комбинации различных приемов. Сокращение алгебраических дробей. Тождества.


18

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Извлечение информации из учебника по заданной теме. Выделение существенного, главного.

Чтение и запись на математическом языке при выполнении разложения на множители.

Комментирование решений, разобранных в учебнике. Работа в паре.

Выполнение преобразования в виде разложения многочлена на множители по алгоритму и образцу. Решение уравнений, построение графиков уравнений, выполнение арифметических действий, связанных с разложением на множители, сокращение дробей. Пошаговый самоконтроль за выполнением указанных действий. Поиск и устранение ошибок.

Подведение итогов. Самооценка знаний.

Умение видеть способ, которым данный многочлен можно разложить на множители и выполнять это разложение. Умение применять формулы сокращенного умножения для разложения многочлена на множители. Умение применять разложение многочлена на множители для решения уравнений, сокращения алгебраических дробей, доказательства делимости значения числового выражения на число, а также как способ рациональных вычислений. Понимание, что такое тождество и тождественное преобразование выражений.

УУД

Умение ставить учебные цели и задачи, планировать свою деятельность, прогнозировать результат, осуществлять самоконтроль и самооценку, преодолевать трудности, корректировать свои знания.

Умение читать математический текст и находить информацию в учебнике по заданной теме. Умение работать по аналогии, образцу, алгоритму, формуле. Умение сравнивать, обобщать, делать выводы, проводить обоснованный вывод формул.

Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение взаимодействовать с товарищами по классу в деловой ситуации, работать в паре.

6

Алгебраические дроби

Основные понятия об алгебраических дробях. Основное свойство алгебраической дроби. Сложение и вычитание, умножение и деление алгебраических дробей.

20

Постановка цели и задач. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и коррекция знаний.

Чтение учебника с целью освоения новых знаний, извлечение информации в соответствии с темой урока и заданием учителя.

Выполнение упражнений по правилу, образцу и алгоритму при нахождении допустимых значений алгебраической дроби, сокращении алгебраических дробей, приведении к наименьшему общему знаменателю, сложении, вычитании, умножении и делении дробей. Моделирование реальных ситуаций с помощью рациональных уравнений.

Работа в паре и группе.

Подведение итогов. Самооценка знаний.

Представление о допустимых значениях алгебраической дроби и умение их находить. Знание основного свойства алгебраической дроби и умение применять его для преобразования дробей; умение выполнять действия с алгебраическими дробями, доказывать тождества. показателем, иллюстрировать примерами свойства степени с целым показателем. Первичные представления о рациональных уравнениях, методах их решения, отборе корней.

УУД

Умение ставить цели, планировать свою деятельность, осуществлять самоконтроль и самооценку. Умение находить информацию в учебнике по заданной теме. Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение работать по правилу, алгоритму, по аналогии. Умение анализировать свои действия, прогнозировать и оценивать результат. Умение взаимодействовать с товарищами по классу, работать в паре и группе.

7

Линейная функция и ее график

10

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Построение точек и геометрических фигур в координатной плоскости.

Построение прямой, заданной линейным уравнением с двумя переменными.

Моделирование реальной ситуации с помощью линейного уравнения с двумя переменными. Исследование графической модели с точки зрения реальности результата.

Проведение аналогии между линейным уравнением с двумя переменными и линейной функцией.

Работа в паре и в группе.

Построение графика линейной функции, в том числе на заданном промежутке. Чтение графика, нахождение наибольшего и наименьшего значений функции.

Анализ поведения графика линейной функции в зависимости от значений коэффициентов k и m на основе наблюдения и сравнения. Работа в группе.

Исследование взаимного расположения графиков линейных функций. Работа в группе.

Самостоятельное изучение материала учебника, извлечение учебной информации, осмысление ее и применение в учебной деятельности. Выполнение упражнений по аналогии, алгоритму, образцу. Самоконтроль решения.

Участие в мини проектной деятельности «Линейная функция как модель описания реальных ситуаций».

Поиск, обнаружение и устранение ошибок при построении графиков линейного уравнения с двумя переменными и линейной функции.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.

Умение строить на координатной плоскости точки и фигуры по заданным координатам, фигуры, симметричные данным относительно координатных осей и начала координат, а также определять координаты точек, данных на координатной плоскости. Первоначальные умения записывать уравнения прямых, параллельных координатным осям. Понимание, что такое линейное уравнение с двумя переменными. Умение узнавать указанные уравнения, выражать в них одну переменную через другую, определять, является ли пара чисел решением уравнения с двумя переменными. Умение строить прямую, которая является графиком данного линейного уравнения с двумя переменными.

Понимание, что такое линейная функция, что такое независимая переменная – аргумент, зависимая переменная – функция. Знание способов задания функции формулой и графически, умение составлять таблицы значений функции. Умение строить и читать графики линейной функции, находить по графику значение одной переменной по значению другой, определять наименьшее и наибольшее значения функции, решать графически линейные уравнения и неравенства. Умение показывать схематически положение на координатной плоскости графиков функций hello_html_m588f3922.gif в зависимости от значений коэффициентов k и b.

УУД

Умение ставить цели, планировать свою деятельность, осуществлять самоконтроль и самооценку.

Умение читать математический текст и находить информацию в учебнике по заданной теме. Умение на наглядно-интуитивном уровне проводить наблюдение, исследование, анализ, делать выводы. Умение осуществлять проектную деятельность: ставить цель, собирать и представлять информацию.

Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение взаимодействовать с товарищами по классу в деловой ситуации.

8

Система двух уравнений с двумя неизвестными

13

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Изучение новой математической модели – системы двух линейных уравнений с двумя переменными. Проведение аналогии между взаимным расположением двух прямых на координатной плоскости и графическим методом решения систем двух линейных уравнений с двумя переменными. Составление алгоритма решения систем графическим методом.

Исследование систем уравнений на предмет числа решений с помощью функционально-графических представлений.

Поиск решения в проблемной ситуации в случаях неточности и недостаточности применения графического метода решения систем (точка пересечения неточна или слишком удалена). Работа в группе.

Составление алгоритма решения систем методом постановки и алгебраического сложения. Работа в паре.

Выполнение самоконтроля при решении систем. Поиск, обнаружение и устранение ошибок при решении систем.

Описание реальных ситуаций с помощью систем двух линейных уравнений с двумя переменными. Решение задач в три этапа математического моделирования.

Участие в мини проектной деятельности «Моделирование реальных ситуаций с помощью систем линейных уравнений».

Отыскание информации на заданную тему в учебнике.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.

Понимание того, что такое система двух линейных уравнений с двумя переменными. Умение узнавать указанные системы, определять, является ли пара чисел решением системы двух линейных уравнений с двумя переменными. Умение решать системы двух линейных уравнений с двумя переменными графическим методом, использовать функционально-графические представления для исследования систем уравнений на предмет числа решений. Умение решать системы двух линейных уравнений с двумя переменными методом подстановки и алгебраического сложения. Умение решать текстовые задачи алгебраическим методом, составляя математическую модель задачи в виде системы двух линейных уравнений с двумя переменными, решать полученную систему и интерпретировать результат.

УУД

Умение ставить цели, планировать свою деятельность, осуществлять самоконтроль и самооценку.

Умение осознанно читать математический текст, находить информацию в учебнике по заданной теме. Умение на наглядно-интуитивном уровне проводить наблюдение, исследование, анализ, делать выводы. Умение решать по образцу и алгоритму, проводить аналогии. Умение осуществлять проектную деятельность.

Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение быстро включаться в деятельность взаимодействовать с товарищами по классу в деловой ситуации.

9

Элементы комбинаторики

Простейшие комбинаторные задачи. Организованный перебор вариантов, дерево вариантов. Комбинаторное правило умножения.


6

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома.

Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка достижений.

Наблюдение, установление закономерности при переборе вариантов, построении дерева вариантов, вывод правила комбинаторного умножения. Сбор, анализ, обобщение и представление статистической информации в виде таблиц и диаграмм. Мини проект

Мини проект «Комбинаторика вокруг нас».

Ознакомление с основными методами решения простейших комбинаторных задач: перебор вариантов, построение дерева вариантов, правило умножения. Умение применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций.

УУД

Умение ставить цель и задачи, планировать деятельность, проводить самоанализ и самоконтроль деятельности.

Умение проводить организованный перебор вариантов, работать по правилу и образцу.

Умение контактировать со всеми участниками учебного процесса.

10

Повторение

3

Постановка цели и задач на при повторении материала. Планирование учебной деятельности на уроке и дома. Подведение итога, коррекция знаний. Самоконтроль.

Актуализация знаний за курс алгебры 7 класса



105

10




алгебра

8 класс (105часа, 3 ч. в неделю)

Тема

Кол-во часов

Основной вид учебной деятельности


Отрабатываемые УУД


1

Повторение курса алгебры 7-го класса

4

Постановка цели и задач на при повторении материала. Планирование учебной деятельности на уроке и дома. Подведение итога, коррекция знаний. Самоконтроль.

Актуализация знаний за курс алгебры 7 класса

2

Неравенства Свойства числовых неравенств.

19

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка достижений.

Самостоятельное чтение учебника с целью поиска информации и изучения материала на заданную тему.

Иллюстрация свойств числовых неравенств на координатной прямой. Применение правил при решении неравенств.

Поиск, обнаружение и устранение ошибок в решении линейных неравенств.

Знание свойств числовых неравенств, умение иллюстрировать их на координатной прямой. Умение распознавать линейные неравенства, решать их, показывать решение неравенства в виде числового промежутка на числовой прямой.

УУД

Умение ставить цели, планировать свою деятельность, прогнозировать результат, осуществлять самоконтроль и самооценку.

Умение читать математический текст и находить информацию в учебнике по заданной теме. Умение проводить наблюдение, сравнение, анализ, исследование, обобщение. Умение работать по правилу и образцу. Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение взаимодействовать с товарищами по классу в деловой ситуации, работать в паре и группе.

3

Приближенные вычисления


10

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка достижений.

Самостоятельное чтение учебника с целью поиска информации и изучения материала на заданную тему.

Участие в проектной деятельности «Где используются числа, записанные в стандартном виде?».

Оценка и прикидка результата в приближенных вычислениях.


Умение находить приближенные значение числа с недостатком и с избытком, умение прикидывать и примерно оценивать результат. Умение представлять числа в стандартном виде и выполнять арифметические действия с числами, записанными в стандартном виде, использовать запись числа в стандартном виде для выражения размеров объектов, длительности процессов в реальном мире, сравнивать числа, записанные в стандартном виде.

УУД

Умение ставить цели, планировать свою деятельность, прогнозировать результат, осуществлять самоконтроль и самооценку.

Умение читать математический текст и находить информацию в учебнике по заданной теме. Умение проводить наблюдение, сравнение, анализ, исследование, обобщение. Умение работать по правилу и образцу. Умение выполнять прикидку, оценку размера объектов, длительности реальных процессов. Умение осуществлять мини проектную деятельность.

Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение взаимодействовать с товарищами по классу в деловой ситуации, работать в паре и группе

4

Квадратные корни

Рациональные, иррациональные числа, множество действительных чисел, стандартный вид числа. Квадратный корень из неотрицательного числа. Функция hello_html_m495ad477.gif. Свойства квадратных корней. Преобразование выражений, содержащих квадратные корни.

14

Постановка цели и задач. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Самостоятельное изучение материала учебника, извлечение учебной информации о множестве рациональных и иррациональных чисел как части множества действительных чисел, осмысление ее и применение в учебной деятельности. Изображение чисел на числовойпрямой, сравнение, выполнение арифметических и алгебраических действий на множестве действительных чисел. Запись рациональных чисел в виде обыкновенной и десятичной периодической дроби. Прикидка возможности представления обыкновенной дроби в виде конечной десятичной дроби. Работа по правилу и по образцу. Составление алгоритма.

Знакомство с методом доказательства от противного.

Изучение свойств функций hello_html_m224f05e3.gif, построение их графиков. Построение и чтение графиков кусочных функций. Применение графических методов при решении уравнений, неравенств и систем уравнений. Исследование взаимного расположения графиков рассматриваемых функций и прямойhello_html_5873fbc2.gif.

Проведение преобразований выражений, содержащих квадратный корень.

Работа в паре.

Поиск, обнаружение и устранение ошибок при выполнении вычислений, построении графиков и преобразовании выражений.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.

Систематизация знания о рациональных числах, понятия иррационального числа, множества действительных чисел. Умение находить приближения рациональных и иррациональных чисел, сравнивать и упорядочивать действительные числа. Освоение понятие квадратного корня из неотрицательного числа, умение строить график функции hello_html_m495ad477.gif, описывать ее свойства, использовать график для нахождения квадратных корней и оценки их приближенных значений, вычислять квадратные корни с помощью калькулятора. Умение исследовать и доказывать свойства квадратных корней, применять их для преобразования выражений.Освоение понятие модуля действительного числа, функции hello_html_m75db2941.gif, умение строить ее график и описывать свойства, умение строить графики кусочных функций, описывать их свойства на основе графических представлений, использовать функциональную символику, строить речевые конструкции с использованием функциональной терминологии.

УУД

Умение ставить цели, планировать свою деятельность, осуществлять самоконтроль и самооценку.

Умение читать математический текст и находить информацию в учебнике по заданной теме. Умение на наглядно-интуитивном уровне проводить наблюдение, исследование, анализ, делать выводы.Умение переводить информацию с наглядно-интуитивного уровня на рабочий уровень восприятия. Умение работать по правилу, алгоритму, образцу. Умение осуществлять прикидку и оценку результата действий, примерно определять положение точки на числовой прямой. Умение логически мыслить, рассуждать, доказывать утверждения.

Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение взаимодействовать с товарищами по классу в деловой ситуации.

5

Квадратные уравнения Квадратные уравнения. Формулы корней квадратных уравнений. Рациональные уравнения. Рациональные уравнения как математические модели реальных ситуаций. Теорема Виета. Разложение квадратного трехчлена на линейные множители.

22

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка достижений.

Изучение материала учебника с целью освоения понятия квадратного уравнения, его коэффициентов, понятия дискриминанта. Исследование квадратных уравнений на предмет числа корней. Вывод формулы для вычисления корней квадратного уравнения. Применение формул для решения квадратных уравнений. Составление алгоритма решения квадратного уравнения.

Исследование соотношения между корнями квадратного уравнения и его коэффициентами, изучение теоремы Виета (прямой и обратной). Применение теоремы Виета для составления квадратных уравнений, подбора корней приведенного квадратного уравнения, разложения квадратного трехчлена на множители.

Освоение методов решения алгебраических уравнений, сводящихся к квадратным.

Моделирование реальных ситуаций с помощью квадратных и рациональных уравнений.

Участие в мини проектной деятельности «Квадратные уравнения как математические модели реальных ситуаций».

Осуществление самоконтроля решения, поиск и устранение ошибок.

Освоение понятия квадратного уравнения, умение распознавать квадратные уравнения, проводить исследование на предмет количества корней квадратного уравнения по дискриминанту и коэффициентам, умение применять формулы корней для решения квадратных уравнений. Умение решать рациональные уравнения и уравнения, сводящиеся к квадратным, умение решать текстовые задачи алгебраическим методом: составлять математическую модель – квадратное либо рациональное уравнение, решать его и интерпретировать результат.

УУД

Умение ставить цели, планировать свою деятельность, прогнозировать результат, осуществлять самоконтроль и самооценку.

Умение читать математический текст и находить информацию в учебнике по заданной теме. Умение проводить анализ, исследование, делать выводы. Умение проводить доказательство утверждений. Умение выполнять действия по формуле, правилу, образцу. Умение моделировать с помощью уравнений реальные ситуации. Умение осуществлять мини проектную деятельность.

Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение взаимодействовать с товарищами по классу в деловой ситуации, работать в паре и группе.

6

Квадратичная функция

Функции hello_html_49af08f8.gifих свойства и графики. Параллельный перенос графика функции. Функция hello_html_m3a4b9c7c.gif, ее свойства и график. Графическое решение квадратных уравнений.


16

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка знаний.

Изучение графических моделей и свойств функций hello_html_60c09499.gif. Исследование зависимости графиков функций от значений коэффициентов. Проведение аналогии между аналитическим заданием квадратичной функции в виде hello_html_49c4d64f.gifи hello_html_m3a4b9c7c.gif.

Наблюдение и исследование взаимного расположения графика функцииhello_html_m6ebf54ee.gifи графиков функций hello_html_m1e4227be.gif, обобщение результатов наблюдения в виде правила.

Составление алгоритмов построение параболы, гиперболы, построения графика функции с учетом параллельного переноса, решения квадратного уравнения графическим методом.

Участие в мини проектной деятельности «Гипербола и парабола как математические модели реальных ситуаций».

Поиск решения в проблемной ситуации в случаях неточности и недостаточности применения графического метода решения квадратного уравнения (точки пересечения неточны или слишком удалены).

Работа в паре и группе.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.

функций, осуществлять параллельный перенос графика функцииhello_html_m6ebf54ee.gifна координатной плоскости. Умение использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями; использовать функционально-графические представления для решения и исследования уравнений, решения систем уравнений и неравенств.

УУД

Умение ставить цели, планировать свою деятельность, осуществлять самоконтроль и самооценку.

Умение осознанно читать математический текст, находить информацию в учебнике по заданной теме. Умение на наглядно-интуитивном уровне проводить наблюдение, исследование, анализ, делать выводы. Умение переводить информацию с наглядно-интуитивного уровня на рабочий уровень восприятия. Умение решать по образцу и алгоритму, проводить аналогии. Умение осуществлять проектную деятельность.

Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение быстро включаться в деятельность, взаимодействовать с товарищами по классу в деловой ситуации

7

Квадратные неравенства

12

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка достижений.

Самостоятельное чтение учебника с целью поиска информации и изучения материала на заданную тему.

Иллюстрация свойств числовых неравенств на координатной прямой. Исследование функций на монотонность с помощью свойств числовых неравенств.

Применение правил при решении неравенств.

Исследование взаимосвязи решений квадратного неравенства и расположения параболы относительно прямой Ох. Установление взаимосвязи между коэффициентом а квадратного неравенства, знаком неравенства и наличием решений при отрицательном дискриминанте.

Исследование квадратного уравнения с параметром на число корней.

Поиск, обнаружение и устранение ошибок в решении квадратных неравенств.

Участие в проектной деятельности «Моделирование реальных ситуаций с помощью квадратных неравенств»

Знание свойств числовых неравенств, умение иллюстрировать на координатной прямой. Умение распознавать квадратные неравенства, решать их, показывать решение неравенства в виде числового промежутка на числовой прямой.

УУД

Умение ставить цели, планировать свою деятельность, прогнозировать результат, осуществлять самоконтроль и самооценку.

Умение читать математический текст и находить информацию в учебнике по заданной теме. Умение проводить наблюдение, сравнение, анализ, исследование, обобщение. Умение работать по правилу и образцу. Умение выполнять прикидку, оценку размера объектов, длительности реальных процессов. Умение осуществлять мини проектную деятельность.

Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение взаимодействовать с товарищами по классу в деловой ситуации, работать в паре и группе

8

Повторение

8

Постановка цели и задач при повторении материала. Планирование учебной деятельности на уроке и дома. Подведение итога, коррекция знаний. Самоконтроль.




105





Алгебра

9 класс (102 часа, 3 ч. в неделю)

Тема

Кол-во часов

Основной вид учебной деятельности


Отрабатываемые УУД


1

Повторение курса алгебры 7-8 классов

5


Актуализация знаний за курс алгебры 8 класса

2

Степень с рациональным показателем

11

Постановка цели и задач. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и коррекция знаний.

Чтение учебника с целью освоения новых знаний, извлечение информации в соответствии с темой урока и заданием учителя.

Преобразования выражений, содержащих степень с рациональным показателем, решение рациональных уравнений. Поиск и отбор корней рационального уравнения.

Моделирование реальных ситуаций с помощью рациональных уравнений.

Работа в паре и группе.

Подведение итогов. Самооценка знаний

Понятие степени с рациональным показателем, умение вычислять значения степеней с рациональным показателем, иллюстрировать примерами свойства степени с рациональным показателем. Первичные представления о рациональных уравнениях, методах их решения, отборе корней.

УУД

Умение ставить цели, планировать свою деятельность, осуществлять самоконтроль и самооценку. Умение находить информацию в учебнике по заданной теме. Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение работать по правилу, алгоритму, по аналогии. Умение анализировать свои действия, прогнозировать и оценивать результат. Умение взаимодействовать с товарищами по классу, работать в паре и группе.

3

Степенная функция

Функция. Независимая и зависимая переменные. Определение числовой функции. Область определения и область значений функции. Естественная область определения функции. Способы задания функции. Свойства функций. Четные и нечетные функции. Алгоритм исследования функции на четность. Графики четной и нечетной функций. Функцииhello_html_m695f35f5.gif, их свойства и графики. Функцииhello_html_m5989d033.gif, их свойства и графики. Функция hello_html_2189d146.gif, ее свойства и график.


16

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка знаний.

Описание свойств функций hello_html_m21795413.gif. Исследование функций.

Задание функций разными способами и построение графиков.

Изучение новых свойств функций: четность и нечетность. Исследование функций на четность и нечетность согласно алгоритму.

Изучение свойств функций hello_html_m695f35f5.gif, hello_html_m5989d033.gif, hello_html_2189d146.gif, построение их графиков. Применение графиков функций к решению уравнений, неравенств, систем уравнений и неравенств.

Участие в проектной деятельности «Описание реальных процессов с помощью графиков функцийhello_html_m695f35f5.gif, hello_html_m5989d033.gif».

Поиск решения в проблемной ситуации: неточность и недостаточность применения графического метода решения уравненияhello_html_m6472f0a1.gif, – по аналогии с решением проблемы hello_html_5b9baf39.gif. Знакомство с новой математической модельюhello_html_m557d1d49.gif.

Работа в паре и группе.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.

Умение вычислять значения функций, заданных формулами, составлять таблицы значений функции, распознавать виды изучаемых функций, способы их задания, строить графики, описывать свойства функций, осуществлять параллельный перенос графика функцииhello_html_m6ebf54ee.gifна координатной плоскости. Умение использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями; использовать функционально-графические представления для решения и исследования уравнений, решения систем уравнений и неравенств. Умение находить решение в проблемной ситуации.

УУД

Умение ставить цели, планировать свою деятельность, осуществлять самоконтроль и самооценку.

Умение осознанно читать математический текст, находить информацию в учебнике по заданной теме. Умение на наглядно-интуитивном уровне проводить наблюдение, исследование, анализ, делать выводы. Умение переводить информацию с наглядно-интуитивного уровня на рабочий и далее на формальный уровень восприятия. Умение решать по образцу и алгоритму, проводить аналогии. Умение осуществлять проектную деятельность.

Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение быстро включаться в деятельность, взаимодействовать с товарищами по классу в деловой ситуации.

4

Прогрессии

Числовые последовательности. Способы задания числовых последовательностей (аналитический, словесный, рекуррентный). Свойства числовых последовательностей. Арифметическая прогрессия. Формула n-го члена. Формула суммы членов конечной арифметической прогрессии. Характеристическое свойство.

Геометрическая прогрессия. Формула n-го члена. Формула суммы членов конечной геометрической прогрессии. Характеристическое свойство. Прогрессии и банковские расчеты.

14

Постановка цели и задач на уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка достижений.

Изучение материала учебника с целью освоения понятиями:последовательность, задание последовательности, график последовательности, формула n-го члена. Освоение понятий арифметическая и геометрическая прогрессии, вывод формул n-го члена, суммы членов конечной арифметической и геометрической прогрессии, характеристических свойств. Исследование последовательностей, в том числе арифметической и геометрической прогрессий. Выполнение упражнений на применение формул n-го члена, суммы членов конечной арифметической и геометрической прогрессии, характеристических свойств.

Моделирование банковских расчетов с помощью прогрессий. Работа в группе.

Участие в проекте «Прогрессии как математические модели реальных ситуаций».

Осуществление самоконтроля решения, обнаружение, поиск и устранение ошибок.

Ознакомление с новой математической моделью – числовая последовательность, арифметическая и геометрическая прогрессии, способами задания последовательностей, формуламиn-го члена, графикамичисловых последовательностей. Знание формул n-го члена, суммы членов конечной арифметической и геометрической прогрессии, характеристических свойств. Освоение новой терминологии, новых символов и обозначений. Умение распознавать арифметическую и геометрическую прогрессии, находить неизвестный компонент формулы n-го члена, формулы суммы конечной арифметической или геометрической прогрессии, применять характеристическое свойство прогрессии. Знание формулы сложных процентов. Умение производить несложные расчеты процентов банковских операций. Умение моделировать реальные ситуации с помощью последовательностей.

УУД

Умение ставить цели, планировать свою деятельность, прогнозировать результат, осуществлять самоконтроль и самооценку.

Умение читать математический текст и находить информацию в учебнике по заданной теме. Умение читать утверждения, записанные на математическом языке в знаково-символьной форме. Умение наблюдать, находить закономерности, выдвигать гипотезы, проводить обоснование. Умение переходить от наглядно-интуитивного уровня восприятия к рабочему и далее формальному уровню. Умение проводить анализ, исследование, делать обоснованные выводы. Умение выполнять действия по формуле, правилу, образцу. Умение моделировать реальные ситуации. Умение осуществлять мини проектную деятельность.

Умение вести диалог, умение слушать, аргументировано высказывать свои суждения. Умение взаимодействовать с товарищами по классу в деловой ситуации, работать в паре и группе.

5

Случайные события

10

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка достижений.

Наблюдение, установление закономерности при переборе вариантов, построении дерева вариантов, вывод правила комбинаторного умножения.

Участие в проведении эксперимента. Сбор, обработка и представление информации.

Ознакомление с новой математической моделью – классической вероятностной схемой и применение формулы для подсчета вероятности. Математическое моделирование простейших вероятностных ситуаций.



Мини проект «Игры и вероятности событий».

. Умение применять основные методы решения комбинаторных задач: перебор вариантов, построение дерева вариантов, правило умножения. Умение применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций.

Освоение понятия факториал, умение применять определение факториала в решении комбинаторных задач.

Ознакомление с новой математической моделью – классической вероятностной схемой и формулой для подсчета вероятности.

Знание основных видов случайных событий: достоверные, невозможные, несовместные события, события, противоположные данным; сумма двух случайных событий. Умение проводить доказательство формул и теорем.

Знание числовых характеристик информации, полученной в результате эксперимента. Умение проводить эксперимент. Умение использовать методы статистической обработки результатов измерений, полученных при проведении эксперимента. Умение группировать данные, проводить обработку данных, представлять информацию в виде таблиц, диаграмм, гистограмм, графиков.

УУД

Умение ставить цель и задачи, планировать деятельность, проводить самоанализ и самоконтроль деятельности.

Умение проводить эксперимент, добывать, обрабатывать и представлять информацию, работать по правилу и образцу.

Умение контактировать со всеми участниками учебного процесса

6

Случайные величины

12

7

Множества. Логика.

10




8

Повторение курса алгебры

Числовые выражения. Алгебраические выражения. Функции и графики. Уравнения и системы уравнений. Неравенства и системы неравенств. Задачи на составление уравнений или систем уравнений. Арифметическая и геометрическая прогрессии.

24

Постановка цели и задач при повторении материала. Планирование учебной деятельности на уроке и дома. Подведение итога, коррекция знаний.

Подготовка к итоговой аттестации по математике. Самоконтроль.




102



ОПИСАНИЕ УЧЕБНО-МЕТОДИЧЕСКОГО И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

7 класс

  1. Алгебра. 7 кл.: учеб. для образоват. учреждений / Ю.М.Колягин и др. – М.: Просвещение, 2013

  2. Алгебра. Дидактические материалы. 7 класс / Л.И. Звавич, Л.В. Кузнецова, С.Б. Суворова. – 17-е издание. - М.: Просвещение, 2012

  3. Алгебра. Дидактические материалы. 7 класс / М.В. Ткачева, Е.Н. Федорова, М.И. Шабунин - М.: Просвещение, 2010

  4. Зив Б.Г, Гольдич В.А. Дидактические материалы по алгебре для 7 класса. – 6-е изд., стереотипное. – СПб.: «ЧеРо-на-Неве», 2009

  5. Ершова А.П., Голобородько В.В., Ершова А.С. Самостоятельные и контрольные работы по алгебре и геометрии для 7 класса. – М.: Илекса, 2008

  6. Алгебра. 7 класс. Практикум. Готов. к ГИА: [учебное пособие] / Крайнева Л.Б. – Москва: Интеллект-Центр, 2013

  7. Ю.М. Колягин, М.В. Ткачева, Е.Н. Федорова, М.И. Шабунин. Алгебра. Рабочая тетрадь. 7класс. Пособие для учащихся общеобразовательных учреждений в двух частях. Часть 1. - М.: Просвещение, 2010

  8. Ю.М. Колягин, М.В. Ткачева, Е.Н. Федорова, М.И. Шабунин. Алгебра. Рабочая тетрадь. 7класс. Пособие для учащихся общеобразовательных учреждений в двух частях. Часть 2. - М.: Просвещение, 2010

  9. Элементы статистики и вероятности: учебное пособие для 7-9 классов общеобразовательных учреждений. М.В. Ткачева. М просвещение 2007

8 класс

  1. Алгебра. 8 кл.: учеб. для образоват. учреждений / Ю.М.Колягин и др. – М.: Просвещение, 2014

  2. Алгебра. Дидактические материалы. 8 класс / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. – М.: Просвещение, 2012

  3. Алгебра. Дидактические материалы. 8 класс / М.В. Ткачева, Е.Н. Федорова, М.И. Шабунин - М.: Просвещение, 2011

  4. Зив Б.Г, Гольдич В.А. Дидактические материалы по алгебре для 8 класса. – 6-е изд., стереотипное. – СПб.: «ЧеРо-на-Неве», 2009

  5. Алгебра: дидакт. материалы для 8кл. / М.К. Потапов, А.В. Шевкин. – М.: Просвещение, 2006

  6. Сборник задач по алгебре: учеб. Пособие для 8-9 кл. с углубл. Изучением математики. – 7-е изд. – М.: Просвещение, 2001

  7. Алгебра. 8 класс. Практикум. Готов. к ГИА: [учебное пособие] / Крайнева Л.Б. – Москва: Интеллект-Центр, 2013

  8. Элементы статистики и вероятности: учебное пособие для 7-9 классов общеобразовательных учреждений. М.В. Ткачева. – М.: Просвещение 2007

9 класс

  1. Алгебра. 9 кл.: учеб. для образоват. учреждений Ю.М.Колягин и др. – М.: Просвещение, 2008

  2. Изучение алгебры 7-9. Колягин Ю.М. – М.: Просвещение, 2008

  3. Алгебра. 9 класс: поурочные планы по учебнику Ш.А. Алимова и др. ЕГ. Лебедева. – Волгоград: Учитель. 2008

  4. Алгебра. Дидактические материалы. 9 класс / Ю.Н. Макарычев, Н.Г. Миндюк, Л.Б. Крайнева. – 17-е изд. – М.: Просвещение, 2012

  5. Алгебра. Дидактические материалы. 9 класс / Л.П. Евстафьева, А.П. Карп; Рос. Акад. Наук, 6-е изд. М.: Просвещение, 2011

  6. Зив Б.Г, Гольдич В.А. Дидактические материалы по алгебре для 9 класса. – 8-е изд. – СПб.: «ЧеРо-на-Неве», 2009

  7. Сборник задач по алгебре: учеб. Пособие для 8-9 кл. с углубл. Изучением математики. – 7-е изд. – М.: Просвещение, 2001

  8. Элементы статистики и вероятности: учебное пособие для 7-9 классов общеобразовательных учреждений. М.В. Ткачева. М просвещение 2007



  1. Интернет-ресурсы



Характеристика основных содержательных линий.

При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Элементы комбинаторики, теории вероятностей, статистики и логики».

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления,

необходимого, в частности, для освоения курса информатики, овладение навыками дедуктивных рассуждений.

Система оценки планируемых результатов, выраженная в формах и видах контроля, в определении контрольно-измерительных материалов, в показателях уровня успешности учащихся.

Система оценивания тестов

При тестировании все верные ответы берутся за 100%, тогда отметка выставляется в соответствии с таблицей:



Процент выполнения задания

Отметка

95% и более

отлично

80-94 %

хорошо

50-79 %

удовлетворительно

менее 50 %

неудовлетворительно









Оценка устных ответов учащихся



Отметка «5» ставится, если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочѐта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • выполнены задания обязательного уровня

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Оценка письменных контрольных работ



Оценка «5» ставится

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно использовал математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, соответствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя.

Оценка «4» ставится

если ответ удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившие математического содержания ответа;

  • допущены один-два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущена ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Оценка «3» ставится за работу, выполненную на 2/3 всей работы правильно или при допущении не более одной грубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочетов, при наличии четырех-пяти недочетов, а также если:

  • неполно раскрыто содержание материала (фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала;

  • имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков

Оценка «2» ставится за работу, в которой число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 2/3 работы, а также если:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Оценка может быть повышена за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

Грубыми считаются ошибки:

  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

  • незнание наименований единиц измерения;

  • неумение выделить в ответе главное;

  • неумение применять знания, алгоритмы для решения задач;

  • неумение делать выводы и обобщения;

  • неумение читать и строить графики;

  • потеря корня или сохранение постороннего корня;

  • отбрасывание без объяснений одного из корней;

  • равнозначные им ошибки;

  • вычислительные ошибки, если они не являются опиской;

  • логические ошибки.

К негрубым ошибкам следует отнести:

  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

  • неточность графика;

  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

  • нерациональные методы работы со справочной и другой литературой;

  • неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

  • нерациональные приемы вычислений и преобразований;

  • небрежное выполнение записей, чертежей, схем, графиков.























ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Рациональные числа

Выпускник научится:

  1. Понимать особенности десятичной системы счисления;

  2. Владеть понятиями, связанными с делимостью натуральных чисел;

  3. Выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

  4. Сравнивать и упорядочивать рациональные числа;

  5. Выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

  6. Использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчеты. Выпускник получит возможность:

  7. Познакомиться с позиционными системами счисления с основаниями, отличными от 10;

  8. Углубить и развить представления о натуральных числах и свойствах делимости;

  9. Научиться использовать приемы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится:

  1. Использовать начальные представления о множестве действительных чисел;

  2. Владеть понятием квадратного корня, применять его в вычислениях. Выпускник получит возможность:

  3. Развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике4

  4. Развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).



Измерения, приближения, оценки

Выпускник научится:

  1. Использовать в ходе решения задач элементарные представления, связанные с приближенными значениями величин. Выпускник получит возможность:

  2. Понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближенными, что по записи приближенных значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

  3. Понять, что погрешность результата вычислений должна быть соизмерима с погрешностью с исходных данных.



Алгебраические выражения

Выпускник научится:

  1. Владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

  2. Выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

  3. Выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

  4. Выполнить разложение многочленов на множители. Выпускник получит возможность:

  5. Научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приемов;

  6. Применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).



Уравнения

Выпускник научится:

  1. Решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

  2. Понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

  3. Применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными. Выпускник получит возможность:

  4. Овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов , практики;

  5. Применять графические представления для исследования уравнений, содержащих буквенные коэффициенты.



Неравенства

Выпускник научится:

  1. Понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

  2. Решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

  3. Применять аппарат неравенств для решения задач из различных разделов курса. Выпускник получит возможность:

  4. Разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

  5. Применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.



Основные понятия. Числовые функции.

Выпускник научится:

  1. Понимать и использовать функциональные понятия и язык (термины, символические обозначения)

  2. Строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

  3. Понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира; применять функциональный язык для описания и исследования зависимостей между физическими величинами. Выпускник получит возможность научиться:

  4. Проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т.п.);

  5. Использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности

Выпускник научиться:

  1. Понимать и использовать язык последовательностей (термины, символические обозначения);

  2. Применять формулы, связанные с арифметической и геометрической прогрессий, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни. Выпускник получит возможность научиться:

  3. Решать комбинированные задачи с применением формул п-го члена и суммы первых п членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;

  4. Понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую – с экспоненциальным ростом.

Описательная статистика

Выпускник научиться использовать простейшие способы представления и анализа статистических данных. Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика

Выпускник научиться решать комбинаторные задачи на нахождение числа объектов или комбинаций. Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.



















Протокол заседания Заместитель директора по УВР

методического совета _______________Сафонова И.А.

МБОУ СОШ №11 29.08.2014г

№ 1 от 29.08.2014г

рук. МС _______ Сафонова И.А.










Краткое описание документа:

   Рабочая программа по алгебре ориентирована на учащихся 7 – 9 классов по ФГОСам; пояснительная записка; общая характеристика учебного предмета; Место предмета в базисном учебном плане; ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА; Тематическое планирование; ОПИСАНИЕ УЧЕБНО-МЕТОДИЧЕСКОГО И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА; Интернет-ресурсы; Система оценивания тестов; Оценка устных ответов учащихся; Оценка письменных контрольных работ; Общая классификация ошибок; ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА;

 

 

 

 

 

 

Автор
Дата добавления 20.05.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров244
Номер материала 539565
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх