Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по геометрии 8 класс УМК Атанасян 2 часа в неделю
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Математика

Рабочая программа по геометрии 8 класс УМК Атанасян 2 часа в неделю

библиотека
материалов


Пояснительная записка


Рабочая программа по геометрии 8 класс составлена на основании федерального компонента государственного стандарта основного общего образования. Программы по геометрии к учебнику для 7-9 классов общеобразовательных школ авторов Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцева, Э.Г. Позднякова и И.И. Юдиной.

Данная программа полностью отражает базовый уровень подготовки школьников по разделам программы. Она конкретизирует содержание тем образовательного стандарта и дает примерное распределение часов по разделам курса. Количество часов, предусмотренное в программе: общее -68 часов, из них: теоретических – 63 часов, контрольных работ – 5 часов

Программа выполняет две основные функции. Информационно-методическая функция позволяет всем участникам процесса получить представление о целях, содержании, общей стратеги обучения, воспитания и развития учащихся средствами данного учебного предмета. Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом их этапов.

На протяжении изучения материала предполагается закрепление и отработка основных умений и навыков, их совершенствование, а также систематизация полученных ранее знание, таким образом, решаются следующие задачи:

  • введение терминологии и отработка умения ее грамотно использования;

  • развитие навыков изображения планиметрических фигур и простейших геометрических конфигураций;

  • совершенствование навыков применения свойств геометрических фигур как опоры при решении задач;

  • формирования умения решения задач на вычисление геометрических величин с применением изученных свойств фигур и формул;

  • совершенствование навыков решения задач на доказательство;

  • отработка навыков решения задач на построение с помощью циркуля и линейки;

  • расширение знаний учащихся о треугольниках, четырёхугольниках и окружности.

Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека. Геометрия – один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических факторов. Теореме о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируется практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Даются первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Даются учащимся систематизированные сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Программой отводится на изучение геометрии по 2 урока в неделю, что составляет 68 часов в учебный год. Из них контрольных работ 6 часов, которые распределены по разделам следующим образом: «Четырехугольники» 1 час, «Площадь» 1 час, «Подобие треугольников» 2 часа, «Окружность» 1 час и 1 час отведен на итоговую административную контрольную работу.

Данное планирование определяет достаточный объем учебного времени для повышения математических знаний учащихся в среднем звене школы, улучшения усвоения других учебных предметов.


Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных работ и математических диктантов (по 10 - 15 минут) в конце логически законченных блоков учебного материала. Итоговая аттестация предусмотрена в виде административной контрольной работы.

Домашнее задание описано на блок уроков. По ходу работы, в зависимости от темпа прохождение материала номера заданий распределяются по урокам так, что по окончании изучения блока все задания выполнены учащимися в обязательном порядке.




















Учебно-тематическое планирование по геометрии


Класс 8 б

Учитель Ивина Ольга Александровна

Количество часов 65

Всего 68 час; в неделю 2 час.

Плановых контрольных работ 5

Планирование составлено на основе:

Г.М. Кузнецова, Н.Г. Миндюк. Программы для общеобразовательных школ, гимназий, лицеев. Математика, 5 – 11 кл. – 4-е изд., стереотип. М.: Дрофа, 2004. – 320с.

Учебник :

Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Э.Г.Позняк, И.И. Юдина. Геометрия 7 – 9. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2004 (и последующие издания) – 384 с.

Дополнительная литература:

  1. Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков, В.Б. Некрасов, И.И. Юдина. Изучение геометрии в 7 – 9 классах. Методические рекомендации к учебнику. 3-е издание. – М.: Просвещение, 2000. – 255 с.

  2. Б.Г. Зив, В.М. Мейлер. Дидактические материалы по геометрии. 8 класс. – М: Просвещение, 2005. - 144 с.

  3. Б.Г. Зив. Рабочая тетрадь. Геметрия, 8 класс. – М.: Просвещение, 2004. – 64 с.



Наименование темы

Кол-во часов

Виды деятельности

1

Повторение

2



Четырехугольники

14

Формулировать определения параллелограмма, прямоугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции; распознавать и изображать их на чертежах и рисунках. Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадрата, ромба, трапеции. Исследовать свойства четырехугольников с помощью компьютерных программ. Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

2

Многоугольники

2

3

Параллелограмм и трапеция

6

4

Прямоугольник, ромб, квадрат

5


Площадь

14

Формулировать и доказывать теорему Пифагора и обратную ей. Выводить формулы площадей прямоугольника, па­раллелограмма, треугольника и трапеции. Находить площадь многоугольника разбиением на треугольники и четырехугольники. Объяснять и иллюстрировать отношение площадей подобных фигур. Решать задачи на вычисление площадей треугольников, четырехугольников и многоугольников. Опираясь на данные условия задачи, находить возможности применения необходимых формул, преобразовывать формулы. Использовать формулы для обоснования доказательных рассуждений в ходе решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

5

Площадь многоугольника

2

6

Площадь параллелограмма, треугольника и трапеции

6

7

Теорема Пифагора

6


Подобные треугольники

18

Формулировать определение подобных треугольников. Формулировать и доказывать теоремы о признаках подобия треугольников, теорему Фалеса. Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольника через его стороны. Формулировать определения синуса, косинуса, тангенса, котангенса углов от 0 до 180°. Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов. Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной тригонометрической функции угла вычислять значения других тригонометрических функций этого угла. Исследовать свойства треугольника с помощью компьютерных программ. Решать задачи на построение, доказательство и вы­числения. Выделять в условии задачи условие и заключение. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Опираясь на данные условия задачи, проводить необходимые рассуждения. Интерпретировать полученный результат и сопоставлять его с условием задачи

8

Определение подобных треугольников

2

9

Признаки подобия

6

10

Применение подобия к доказательству теорем и решению задач

7

11

Соотношение между углами и сторонами треугольника

4


Окружность

15

Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окружностью. Формулировать и доказывать теоремы о вписанных углах, углах, связанных с окружностью. Формулировать соответствие между величиной центрального угла и длиной дуги окружности. Изображать, распознавать и описывать взаимное расположение прямой и окружности. Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ. Решать задачи на вычисление линейных величин, градусной меры угла. Решать задачи на построение, доказательство и вы­числения. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные по­строения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

12

Касательная к окружности

3

13

Центральные и вписанные углы

3

14

Четыре замечательные точки треугольника

3

15

Вписанная и описанная окружности

6


Итого

65













Содержание тем учебного курса

Четырехугольники

Многоугольник, выпуклый многоугольник, четырёхугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Цель: изучить наиболее важные виды четырёхугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.

Площадь

Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычислений площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квад¬рата, обоснование которой не является обязательным для обучающихся.

Нетрадиционной для школьного курса является теорема об отношений площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Подобные треугольники

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

Цель: ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональностью сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.

В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

Окружность

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя замечательными точками треугольника.

В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.

Повторение

Цель:обобщение и систематизация знаний, умений и навыков за курс геометрии 8 класса


Шкала оценивания:

Критерии оценивания  знаний, умений и навыков

обучающихся по математике.

(Согласно Методическому письму «Направления работы учителей математики по исполнению единых требований преподавания предмета на современном этапе развития школы»)

Для оценки достижений учащихся применяется пятибалльная система оценивания.

Нормы оценки:

 

1. Оценка письменных контрольных работ обучающихся по математике.

 

Ответ оценивается отметкой «5», если:

1) работа выполнена полностью;

2) в логических рассуждениях и обосновании решения нет пробелов и ошибок;

3) в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

 

Отметка «4» ставится, если:

1) работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

2)допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

 

Отметка «3» ставится, если:

1) допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

 

Отметка «2» ставится, если:

1) допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

 

Отметка «1» ставится, если:

1)работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

 

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

 

2.Оценка устных ответов обучающихся по математике

 

Ответ оценивается отметкой «5», если ученик:

полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;

отвечал самостоятельно, без наводящих вопросов учителя;

возможны одна – две  неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

 

Ответ оценивается отметкой «4»,

если удовлетворяет в основном требованиям на оценку «5»,

но при этом имеет один из недостатков:

в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.


Отметка «3» ставится в следующих случаях:

неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);

имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.



Отметка «2» ставится в следующих случаях:

не раскрыто основное содержание учебного материала;

обнаружено незнание учеником большей или наиболее важной части учебного материала;

допущены ошибки в определении понятий, при использовании математической терминуологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.


Отметка «1» ставится, если:

ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.








ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

В результате изучения курса геометрии 8-го класса учащиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).




























Календарно-тематическое планирование


п/п

Раздел, название урока в

поурочном планировании

Основные виды учебной деятельности, требования к результату

Контроль

знаний

учащихся

Кол-во

часов

Дата


Оборудование

мультимедийный компьютер, проектор, экран, программное обеспечение





ПОВТОРЕНИЕ

Цель: подготовить учащихся к изучению темы «Четырехугольники».

2


1

Повторение.

Уметь выполнять задачи из разделов курса VII класса: признаки равенства треугольников; соотношения между сторонами и углами треугольника; признаки и свойства параллельных прямых. Знать понятия: теорема, свойство, признак.

Практикум: решение наиболее типичных задач из курса геометрии VII класса. Решение задач по готовым чертежам. Групповой контроль.

1

1.09

2

Повторение.

1

2.09


ГЛАВА V ЧЕТЫРЕХУГОЛЬНИКИ

Цель: дать учащимся систематические сведения о четырехугольниках и их свойствах; сформировать представления о фигурах, симметричных относительно точки или прямой.

14



§1. МНОГОУГОЛЬНИКИ.



2


3

Многоугольник. Выпуклый многоугольник, п.39.

Уметь объяснить, какая фигура называется многоугольником, назвать его элементы; знать, что такое периметр многоугольника, какой многоугольник называется выпуклым; уметь вывести формулу суммы углов выпуклого многоугольника и решать задачи типа 364 – 370. Уметь находить углы многоугольников, их периметры.

Урок изучения и первичного закрепления новых знаний (лекция с элементами дискуссии). Тематический и групповой контроль.

1

8.09

4

Четырехугольник, п.п. 40,41.

Урок обобщения и систематизации знаний. С/Р обучающего характера. Индивидуальный письменный контроль.

1

9.09


§2. ПАРАЛЛЕЛОГРАММ И ТРАПЕЦИЯ.




6


5

Параллелограмм, п.42.



Знать определения параллелограмма и трапеции, виды трапеций, формулировки свойств и признаков параллелограмма и равнобедренной трапеции, уметь их

доказывать и применять при решении

задач типа 372 – 377, 379 – 383, 39О.




Комбинированный урок. М/Д. Взаимный контроль.

1

15.09

6

Свойства и признаки параллелограмма, п.43.

Урок теоретических С/Р. Самоконтроль и индивидуальный контроль.

1

16.01

7

Решение задач на свойства и признаки параллелограмма.

Практикум. С/Р Индивидуальный контроль.

1

22.09

8

Трапеция, п.44.

Уметь выполнять деление отрезка на n равных частей с помощью циркуля и линейки; используя свойства параллелограмма и равнобедренной трапеции уметь доказывать некоторые утверждения. Уметь выполнять задачи на построение четырехугольников.

Урок изучения и первичного закрепления новых знаний

1

23.09

9

Трапеция, п.44.

Урок закрепления знаний. Практикум. С/Р. Индивидуал. контроль.

1


29.09

10

Задачи на построение циркулем и линейкой.

Урок комплексного применения ЗУН учащихся. Практическая работа. Самоконтроль и взаимоконтроль.

1

30.09


§3. ПРЯМОУГОЛЬНИК. РОМБ. КВАДРАТ.




5


11

Прямоугольник, п.45.

Знать определения частных видов параллелограмма: прямоугольника, ромба и квадрата, формулировки их свойств и признаков.

Уметь доказывать изученные теоремы и применять их при решении задач типа 401 – 415.


Знать определения симметричных точек и фигур относительно прямой и точки.

Уметь строить симметричные точки и распознавать фигуры, обладающие осевой симметрией и центральной симметрией.

Урок практических самостоятельных работ (исследовательского типа). Тематический контроль.

1

6.10

12

Ромб и квадрат, п.46.

Самост. изучение теории. Самоконтроль и индивидуальный контр.

1

7.10

13

Решение задач.

Усвоение изученного материала в процессе решения задач. С/Р обучающего характера с проверкой на уроке. Самоконтроль.

1

13.10

14

Осевая и центральная симметрии, п. 47.

Практическая работа.

1

14.10

15

Решение задач.

Уметь применять все изученные формулы при решении задач, в устной форме доказывать теоремы и излагать необходимый теоретический материал.

Урок обобщения и систематизации знаний. Практикум по решению задач. Групповой, устный и письменный контроль. Урок зачет.

1

20.10

16

КОНТРОЛЬНАЯ РАБОТА №1 «Четырехугольники», п.п. 39-46.


Уметь применять все изученные формулы и теоремы при решении задач

Урок контроля, оценки и коррекции знаний учащихся. Фронтальный контроль.

1

21.10


ГЛАВА VI ПЛОЩАДЬ

Цель: сформировать понятие площади многоугольника, выработать у учащихся умение находить площадь треугольника, параллелограмма, трапеции, применять теорему Пифагора.

14



§1. ПЛОЩАДЬ МНОГОУГОЛЬНИКА.



2


17

Понятие площади многоугольника. Площадь квадрата, п.п. 48, 49.

Знать основные свойства площадей и формулу для вычисления площади прямоугольника. Уметь вывести формулу для вычисления площади прямоугольника и использовать ее при решении задач типа 447 – 454, 457.

Урок с частично- поисковой деятельностью.

ГК.

1

27.10

18

Площадь прямоугольника, п.50.

С/Р обучающего характера с проверкой на уроке. ИК.

1

28.10


§2. ПЛОЩАДИ ПАРАЛЛЕЛОГ

РАММА, ТРЕУГОЛЬНИКА И ТРАПЕЦИИ.



6


19

Площадь параллелограмма, п.51.

Знать формулы для вычисления площадей параллелограмма, треугольника и трапеции; уметь их доказывать, а также знать теорему об отношении площадей треугольников, имеющих по равному углу, и уметь применять все изученные формулы при решении задач типа 459 – 464, 468 – 472, 474.

Изучение нового. материла. МД

1

10.11

20

21

Площадь треугольника, п.52.

Изучение нового материла. С/Р обучающего характера.

2

11.11

17.11

22

Площадь трапеции, п.53.

Изучение нового материла в процессе решения задач. С/Р.

1

18.11

23

Решение задач.

Закрепить в процессе решения задач, полученные ЗУН, подготовиться к КР.

Уроки обобщения и систематизации знаний. ИК. ВК.

1

24.11


§3. ТЕОРЕМА ПИФАГОРА.



3


24

25

Теорема Пифагора, п.54.

Знать теорему Пифагора и обратную ей теорему, область применения, пифагоровы тройки. Уметь доказывать теоремы и применять их при решении задач типа 483 – 499 (находить неизвестную величину в прямоугольном треугольнике).

Изучение нового материала.

Повторение (задачи по готовым чертежам). ГК.

2

25.11

01.12

26

27

Теорема, обратная теореме Пифагора, п.55.

Изучение нового материала. Тест. ИК.

2

02.12

8.12

28

Решение задач на применение теоремы Пифагора и обратной ей теоремы.

Уметь применять теоремы при решении задач типа 483 – 499 (находить неизвестную величину в прямоугольном треугольнике).

Урок закрепления знаний. Практикум. Проверочная С/Р. ИК.

1

9.12

29

30

Решение задач.

Уметь применять все изученные формулы и теоремы при решении задач; в устной форме доказывать теоремы и излагать необходимый теоретический материал.

Урок обобщения и систематизации знаний. Практикум по решению задач. Фронтальный опрос. ФК. Урок зачет.

2

15.12

16.12

31

КОНТРОЛЬНАЯ РАБОТА №2 «Площадь», п.п. 47-55.

Уметь применять все изученные формулы и теоремы при решении задач

Урок контроля, оценки и коррекции знаний учащихся. Фронтальный контроль.

1

22.12


ГЛАВА VII ПОДОБНЫЕ ТРЕУГОЛЬНИКИ

Цель: сформировать понятие подобных треугольников, выработать умение применять признаки подобия треугольников при решении простейших задач, использовать понятия синуса, косинуса, тангенса острого угла для решения прямоугольных треугольников.

19



§1. ОПРЕДЕЛЕНИЕ ПОДОБНЫХ ТРЕУГОЛЬНИКОВ.



2


32

Пропорциональные отрезки, п.56.

Знать определения пропорциональных отрезков и подобных треугольников, теорему об отношении подобных треугольников и свойство биссектрисы треугольника (задача 535).

Уметь определять подобные треугольники, находить неизвестные величины из пропорциональных отношений, применять теорию при решении задач типа 535 – 538, 541.

Урок изучения и первичного закрепления новых знаний. Беседа. ГК.

1

23.12

33

Определение подобных треугольников. Отношение площадей подобных треугольников, п.п. 57, 58.

Комбинированный урок. Изучение нового материла. С/Р обучающего характера. Взаимный контроль

1

12.01


§2. ПРИЗНАКИ ПОДОБИЯ ТРЕУГОЛЬНИКОВ.



5


34

35

Первый признак подобия треугольников, п.59.

Знать признаки подобия треугольников, определение пропорциональных отрезков. Уметь доказывать признаки подобия и применять их при решении задач типа 550 – 555, 559 – 562.

Урок изучения и первичного закрепления новых знаний. Беседа. ГК.

2

13.01

19.01

36

37

Второй и третий признаки подобия треугольников, п.п. 60, 61.

Изучение нового материла. С/Р обучающего характера. Взаимный контроль.

2

20.01

26.01

38

Решение задач.

Урок обобщения и систематизации знаний. ИК.

1

27.01

39

КОНТРОЛЬНАЯ РАБОТА №3 «Признаки подобия треугольников», п.п. 56-61.

Уметь применять все изученные теоремы при решении задач, знать отношения периметров и площадей.

Урок контроля, оценки и коррекции знаний. ФК

1

2.02


§3. ПРИМЕНЕНИЕ ПОДОБИЯ К ДОКАЗАТЕЛЬСТВУ ТЕОРЕМ И РЕШЕНИЮ ЗАДАЧ.



7


40

41

Средняя линия треугольника, п.62. Решение задач.

Знать теоремы о средней линии треугольника, точке пересечения медиан треугольника и пропорциональных отрезках в прямоугольном треугольнике. Уметь доказывать эти теоремы и применять при решении задач типа 567, 568, 570, 572 – 577, а также уметь с помощью циркуля и линейки делить отрезок в данном отношении и решать задачи на построение типа 586 – 590.

Изучение нового материала. Тест. ИК. П/Р

2

3.02

9.02

42

43

Пропорциональные отрезки в прямоугольном треугольнике, п.63. Решение задач.

Изучение нового материла. Обучающая С/Р. ИК.

2

10.02

16.02

44

45

Решение задач на построение методом подобия.

Уроки практикумы по решению задач. С/Р.

2

17.02

24.02

46

Практические приложения подобия треугольников. О подобии произвольных фигур, п.п. 64, 65.

Практическая работа «Измерительные работы на местности». ГК.

1

2.03


§4. СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА.



3


47

Синус, косинус и тангенс острого угла прямоугольного треугольника, п.66.

Знать определения синуса, косинуса и тангенса острого угла прямоугольного треугольника, значения синуса, косинуса и тангенса для углов 30, 45 и 60, метрические соотношения. Уметь доказывать основное тригонометрическое тождество, решать задачи типа 591 – 602.

Изучение нового материала. Лекция. Самоконтроль.

1

3.03

48

Значения синуса, косинуса и тангенса для углов 30, 45 и 60, п.67.

Урок с частично- поисковой работой.

ВК. ИК.

1

10.03

49

Решение задач.

Урок закрепления знаний. С/Р. Зачет.

1

16.03

50

КОНТРОЛЬНАЯ РАБОТА №4 «Применение подобия к решению задач», п.п. 62-67.

Уметь применять все изученные формулы, значения синуса, косинуса, тангенса, метрические отношения при решении задач

Урок контроля, оценки и коррекции знаний. ФК

1

17.03


ГЛАВА VIII ОКРУЖНОСТЬ

Цель: дать учащимся систематические сведения об окружности и ее свойствах, касательной к окружности, вписанных и описанных окружностях.

15



§1. КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ.



3


51

Взаимное расположение прямой и окружности, п.68.

Знать возможные случаи взаимного расположения прямой и окружности, определение касательной, свойство и признак касательной. Уметь их доказывать и применять при решении задач типа 631, 633 – 636, 638 – 643, 648, выполнять задачи на построение

окружностей и касательных, определять отрезки хорд окружностей.

Урок – лаборатория. Исследование взаимного расположения прямой и окружности. С/Р практического характера. ГК.

1

6.04

52

53

Касательная к окружности, п.69.

Изучение нового матер. Комбинированный урок. Тест, обучающая С/Р.

2

7.04

13.04


§2. ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ.



3


54

Градусная мера дуги окружности, п.70.

Знать, какой угол называется центральным и какой вписанным, как определяется градусная мера дуги окружности, теорему о вписанном угле, следствия из нее и теорему о произведении отрезков пересекающихся хорд. Уметь доказывать эти теоремы и применять при решении задач типа 651 – 657, 659, 666 – 669.

Усвоение изученного материала в процессе решения зад.

1

14.04

55

56

Теорема о вписанном угле, п.71.

Комбинированный урок: лекция, практикум, проверочная С/Р.

2

20.04

21.04


§3. ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА.



3


57

58

Свойства биссектрисы угла и серединного перпендикуляра к отрезку, п.72.

Знать теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия, а также теорему о пересечении высот треугольника. Уметь доказывать эти теоремы и применять их при решении задач типа 674 – 679, 682 – 686. Уметь выполнять построение замечательных точек треугольника.

Изучение нового матер. Подготовительная работа по готовым чертежам. ИК.

2

27.04

28.04

59

Теорема о пересечении высот треугольника, п.73.

Усвоение материала в процессе выполнения практической работы и решения задач. ГК, ИК.

1

5.05


§4. ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТИ.



4


60

61

Вписанная окружность, п.74.

Знать, какая окружность называется вписанной в многоугольник и какая описанной около многоугольника, теоремы об окружности, вписанной в треугольник, и об окружности, описанной около треугольника, свойства вписанного и описанного четырехугольников. Уметь доказывать эти теоремы и применять при решении задач типа 689 – 696, 701 – 711.

Усвоение материала в процессе решения задач. С/Р обуч. характера.

2

11.05

12.05

62

63

Описанная окружность, п.75.

Усвоение изученного материала в процессе решения задач. С/Р обучающего характера.

2

18.05

19.05

64

Решение задач.

Знать утверждения задач 724, 729 и уметь их применять при решении задач типа 698 – 700, 708.

Комбинированный урок: практикум, зачет. Фронтальный устный опрос. Урок зачет.

1

19.05

65

КОНТРОЛЬНАЯ РАБОТА №5 «Окружность», п.п. 68-75.

Уметь применять все изученные теоремы при решении задач.

Урок контроля, оценки и коррекции знаний. Фронтальный письменный контроль.

1

25.05





Литература

  • Федеральный компонент государственных образовательных стандартов основного общего образования (приказ Минобрнауки от 05.03.2004г. № 1089).

  • Временные требования к минимуму содержания основного общего образования (утверждены приказом МО РФ от 19.05.98 № 1236).\

  • Примерная программа по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г № 03-1263)

  • Примерная программа общеобразовательных учреждений по геометрии 7–9 классы, к учебному комплексу для 7-9 классов (авторы Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008 – М: «Просвещение», 2008. – с. 19-21).

  • Геометрия: учеб, для 7—9 кл. / [Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2004—2008.

  • Оценка качества подготовки выпускников основной школы по математике/ Г.В.Дорофеев и др.– М.: Дрофа, 2000.

  • Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков и др.]. -М.: Просвещение, 2003 — 2008.

  • Гусев В. А. Геометрия: дидакт. материалы для 8 кл. / В. А. Гусев, А. И. Медяник. — М.: Просвещение, 2003—2008.

  • Зив Б. Г. Геометрия: дидакт. материалы для 8 кл. / Б. Г. Зив, В. М. Мейлер. — М.: Просвещение, 2004—2008.


Дополнительная литература:

  1. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;

  2. Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение,2005.

  3. Гаврилова Н.Ф. Поурочные разработки по геометрии: 8 класс. – М.: ВАКО, 2005.

ПРИЛОЖЕНИЕ

Контрольная работа №1

Четырехугольники

Вариант 1


А1. Периметр параллелограмма ABCD равен 80 см. hello_html_7707454f.gifА = 30о, а перпендикуляр ВН к прямой АD равен 7,5 см. Найдите стороны параллелограмма


А2. Докажите, что у равнобедренной трапеции углы при основании равны.


А3. Постройте ромб по двум диагоналям. Сколько осей симметрии у ромба?

________________________________________________


В1. Точки Р, К, L, M – середины сторон ромба АВСD. Докажите, что четырехугольник РКLM – прямоугольник.

____________________________________________________________


Вариант 2


А1. Диагональ квадрата равна 4 см. Сторона его равна диагонали другого квадрата. Найдите сторону последнего.


А2. Докажите, что середины сторон прямоугольника являются вершинами ромба.


А3. Постройте квадрат по диагонали. Сколько осей симметрии имеет квадрат?

________________________________________________


В1. В трапеции АВСD меньшее основание ВС равно 4 см. Через вершину В проведена прямая, параллельная стороне СD. Периметр образовавшегося треугольника равен 12 см. Найдите периметр трапеции.


Контрольная работа №2

Площади фигур

Вариант 1


А1. В прямоугольнике ABCD АВ = 24 см, АС = 25 см. Найдите площадь прямоугольника.


А2. Найдите площадь прямоугольного треугольника, если гипотенуза его равна 40 см, а острый угол равен 60о.


А3. Найдите площадь ромба, если его диагонали равны 14 и 6 см.


А4. Найдите площадь равнобедренной трапеции, у которой высота равна 16 см, а диагонали взаимно перпендикулярны.

____________________________________________________


В1. Середины оснований трапеции соединены отрезком.

Докажите, что полученные две трапеции равновелики.

________________________________________________________________


Вариант 2


А1. В ромбе ABCD АВ = 10 см, меньшая диагональ АС = 12 см. Найдите площадь ромба.


А2. Найдите площадь равнобедренного треугольника, если его боковая сторона равна 6 см, а угол при вершине равен 60о.


А3. Найдите площадь прямоугольника, если его диагональ равна 13 см, а одна из сторон 5 см.


А4. Найдите площадь равнобедренной трапеции, у которой высота равна 16 см, а диагонали взаимно перпендикулярны.

____________________________________________________


В1. Докажите, что медиана треугольника разбивает его на два треугольника одинаковой площади.





Контрольная работа №3

Признаки подобия треугольников

Вариант 1hello_html_56fa0048.jpg


А1. На рисунке АВ || CD.

а) Докажите, что АО : ОС = ВО : OD.

б) Найдите АВ, если OD = 15 см, ОВ = 9 см,

CD = 25 см.


А2. Найдите отношение площадей треугольников ABC и KMN, если АВ = 8 см, ВС = 12 см, АС = 16 см, КМ = 10 см, MN = 15 см, NK = 20 см.

__________________________________________


В1. Докажите, что в подобных треугольниках отношение двух сходственных сторон равно отношению двух сходственных высот.

____________________________________________________________________



Вариант 2hello_html_45413fdd.jpg


А1. На рисунке MN || АС.

а) Докажите, что hello_html_m4e6baf92.gif.

б) Найдите MN, если AM = 6 см, ВМ = 8 см,

АС = 21 см.


А2. Даны стороны треугольников PКМ и ABC:

PК = 16 см, КМ = 20 см, РМ = 28 см и АВ = 12 см,

ВС = 15 см, АС = 21 см. Найдите отношение площадей этих треугольников.

______________________________________


В1. Докажите, что в подобных треугольниках отношение двух сходственных сторон равно отношению двух сходствен­ных биссектрис.




Контрольная работа №4

Соотношения между сторонами и углами в прямоугольном треугольнике

Вариант 1

1. В прямоугольном треугольнике АВС hello_html_m19f0d514.gif высота АD равна 12 см. Найдите АС и cos C.

2. Диагональ ВD параллелограмма АВСD перпендикулярна к стороне АD. Найдите площадь параллелограмма АВСD, если АВ = 12 см, hello_html_m4ea658c9.gif


Вариант 2

  1. Высота ВD прямоугольного треугольника АВС равна 24 см и отсекает от гипотенузы АС отрезок DC, равный 18 см. Найдите АВ и cos A.

  2. Диагональ АС прямоугольника АВСD равна 3 см и составляет со стороной АD угол 37о. Найдите площадь прямоугольника АВСD.


Контрольная работа №5

Окружность

Вариант 1

А1. Из точки данной окружности проведены диаметр и хорда, равная радиусу. Найдите угол между ними.


А2. Хорда АВ стягивает дугу, равную 125о, а хорда АС – дугу в 52о. Найдите угол ВАС


А3. Постройте окружность, описанную около тупоугольного треугольника.

_____________________________________________


В1. Основание равнобедренного треугольника равно 18 см, а боковая сторона равна 15 см. Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей.

__________________________________________________________________

Вариант 2

А1. Через точку данной окружности проведены касательная и хорда, равная радиусу. Найдите угол между ними.


А2. Хорда АВ стягивает дугу, равную 75о, а хорда АС – дугу в 112о. Найдите угол ВАС

А3. Постройте окружность, вписанную в данный треугольник.

_____________________________________________


В1. Высота, проведенная к основанию равнобедренного треугольника, равна 9 см, а само основание равно 24 см. Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей


Контрольная работа №6

Итоговая контрольная работа за курс геометрии 8 класса

Вариант 1

А1. В прямоугольном треугольнике найдите гипотенузу с, если его катеты равны: а=5 см, b=12 см.

А2. В треугольнике АВС hello_html_m13c7957e.gif. Найдите hello_html_m23ddb626.gif.


А3. В равнобедренном треугольнике боковая сторона равна 10 дм и основание равно 12 см. Найдите: а)высоту треугольника, проведенную к основанию треугольника; б) площадь треугольника.


А4. Постройте равнобедренный треугольник по боковой стороне и углу при основании.

__________________________________________________


В1. Около остроугольного треугольника АВС описана окружность с центром О. Расстояние от точки О до прямой АВ равно 6 см, hello_html_7002d2e7.gif.

Найдите: а) угол АВО; б) радиус окружности.

__________________________________________________________________

Вариант 2


А1. В прямоугольном треугольнике гипотенуза с=25 см, один из его катетов: а=24 см. Найдите другой катет b.


А2. В прямоугольном треугольнике АВС hello_html_m21967296.gif. Найдите hello_html_m23ddb626.gif.


А3. В равнобедренном треугольнике боковая сторона равна 13 дм и основание равно 10 см. Найдите: а)высоту этого треугольника, проведенную к основанию треугольника; б) площадь треугольника.


А4. Постройте окружность данного радиуса, проходящую через две данные точки.

__________________________________________________


В1. В треугольник АВС с прямым углом С вписана окружность с центром О, касающаяся сторон АВ, ВС и СА в точках DE и F соответственно. Известно, что hello_html_459710f7.gif.

Найдите: а) радиус окружности; б) углы EOF и EDF


Краткое описание документа:

Количество часов : на учебный год 68,за неделю 2.

 

Плановых контрольных уроков 6

 

Планирование составлено на основе программы министерства образования РФ по геометрии: авторы Атанасян Л.С., В.Ф.Бутузов, С.Б.Кадомцев и др. (Составитель сборника программ: Т. А .Бурмистрова. «Просвещение», 2008 г.) и в соответствии с учебником «Геометрия, 7–9», авторы Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др., - М.: Просвещение, 2010

 

Учебник Геометрия, 7–9», авторы Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др., - М.: Просвещение, 2010

Дополнительная литература:

  1. Ю.Н. Макарычев, Н.Г. Миндюк, С.Б. Суворова. Изучение алгебры в 7-9 классах. Методическое пособие. – М.: Просвещение, 2009.

  2. Ю.Н. Макарычев, Н.Г. Миндюк В.И. Жохов. Дидактические материалы по алгебре, 8 класс. – М: Просвещение, 2008 – 160с.

Автор
Дата добавления 18.01.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров4583
Номер материала 314244
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх