Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 11 класс.

Рабочая программа по математике 11 класс.

В ПОМОЩЬ УЧИТЕЛЮ ОТ ПРОЕКТА "ИНФОУРОК":
СКАЧАТЬ ВСЕ ВИДЕОУРОКИ СО СКИДКОЙ 86%

Видеоуроки от проекта "Инфоурок" за Вас изложат любую тему Вашим ученикам, избавив от необходимости искать оптимальные пути для объяснения новых тем или закрепления пройденных. Видеоуроки озвучены профессиональным мужским голосом. При этом во всех видеоуроках используется принцип "без учителя в кадре", поэтому видеоуроки не будут ассоциироваться у учеников с другим учителем, и благодарить за качественную и понятную подачу нового материала они будут только Вас!

МАТЕМАТИКА — 603 видео
НАЧАЛЬНАЯ ШКОЛА — 577 видео
ОБЖ И КЛ. РУКОВОДСТВО — 172 видео
ИНФОРМАТИКА — 201 видео
РУССКИЙ ЯЗЫК И ЛИТ. — 456 видео
ФИЗИКА — 259 видео
ИСТОРИЯ — 434 видео
ХИМИЯ — 164 видео
БИОЛОГИЯ — 305 видео
ГЕОГРАФИЯ — 242 видео

Десятки тысяч учителей уже успели воспользоваться видеоуроками проекта "Инфоурок". Мы делаем все возможное, чтобы выпускать действительно лучшие видеоуроки по общеобразовательным предметам для учителей. Традиционно наши видеоуроки ценят за качество, уникальность и полезность для учителей.

Сразу все видеоуроки по Вашему предмету - СКАЧАТЬ

  • Математика

Поделитесь материалом с коллегами:




ГБОУ СОШ№104




«Принято» «Утверждаю»

Руководитель МО

естественно –математического цикла Директор ГБОУ СОШ№104:

________________Казырицкая И.В. ____________Гржибовская Е.З.

Протокол №1 от «3»сентября 2013 Приказ №____ от «___»______2013





РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА

ПО МАТЕМАТИКЕ (АЛГЕБРА И НАЧАЛА АНАЛИЗА, ГЕОМЕТРИЯ)

11 КЛАССА

СРЕДНЕГО (ПОЛНОГО) ОБЩЕГО ОБРАЗОВАНИЯ

Рабочая программа по математике разработана на основе примерных программ среднего (полного) общего образования, авторских программ под редакцией Т.А Бурмистровой (алгебра и начала математического анализа, геометрия),

МО РФ в соответствии с требованиями федерального компонента Государственного образовательного стандарта среднего (полного) общего образования

(Москва «Просвещение», 2011г., входит в УМК «Школа России»)



СОСТАВИТЕЛЬ ПРОГРАММЫ:

Казырицкая И.В.,

учитель математики








Количество часов:

  • на учебный год: 170

  • в неделю: 5

  • - контрольных работ: 11


Срок реализации рабочей учебной программы – один учебный год.


Учебно-методический комплекс учителя:

Алгебра и начала анализа 10-11. / / Ш.А.Алимов, Ю.А.Калягин / М.: Просвещение, 2011.

Алгебра и начала математического анализа. 11 класс : учеб. для общеобразоват. учреждений : базовый и профил. уровни / /Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин; под ред. А. Б. Жижченко/ М.: Просвещение,2010.

Уроки алгебры и начал анализа в 10 классе. / Т.Л. Афанасьева, Л.А. Тапилина. Пособие для учителей. / Волгоград, «Учитель».

Дидактические материалы по алгебре и началам анализа

Тесты по алгебре и началам анализа, 10 кл Ю.А. Глазков, И.К. Варшавский, М.Я. Гиашвили, М, «Экзамен», 2010.

Л.С.Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Л.С. Киселев, Э.Г. Поняк, учеб. для 10-11 кл. общеобразоват. Учреждений, - М. : Просвещение, 2010 Веселовский, С. Б. Дидактические материалы по геометрии для 11 класса / С. Б. Веселовский, В. Д. Рябчинская. - М. : Просвещение, 1998.

Ковалева Г.И. Геометрия в 11 классах: метод, рекомендации / Ковалева Г.И. Волгоград, Учитель,, 2005.

Бурмистрова Т.А. Геометрия. 10 - 11 классы. Программы общеобразовательных учреждений. М., «Просвещение», 2011г.

.


Учебно-методический комплекс ученика:

Алгебра и начала анализа 10-11. / / Ш.А.Алимов, Ю.А.Калягин / М.: Просвещение, 2010.

Л.С.Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Л.С. Киселев, Э.Г. Поняк, учеб. для 10-11 кл. общеобразоват. Учреждений, - М. : Просвещение, 2010

Зив Б.Г., Мейлер В.М. Дидактические материалы по геометрии для 10 кл. – М.: Просвещение, 2007.








Алгебра

на учебный год: 102

- в неделю: 3

- контрольных работ: 6


Цели изучения курса:

-овладение системой математических знаний и умений, необходимых в повседневной жизни, для изучения смежных дисциплин и продолжения образования в старших классах;

-интеллектуальное развитие, формирование качеств: точность мысли, логическое мышление, способность к преодолению трудностей,

-воспитание культуры личности;

-формирование математического аппарата для решения задач;

-формирование опыта решения разнообразных классов задач из различных разделов математики, требующих поиска путей решения.

Задачи курса:

-ввести понятия тригонометрических функций числового аргумента, расширить знания о свойствах функций;

-сформировать представления о производной и научить применять производную к исследованию функций;

- ввести понятия комплексных чисел;

-ввести элементы комбинаторики и теории вероятностей.




СОДЕРЖАНИЕ ОБУЧЕНИЯ

1. Тригонометрические функции

Тождественные преобразования тригонометрических выражений. Тригонометрические функции числового аргу­мента: синус, косинус и тангенс. Периодические функции. Свойства и графики тригонометрических функций.

Основная цель:

  • расширить и закрепить знания и умения, связанные с тождественными преобразованиями тригонометрических выражений;

  • изучить свойства триго­нометрических функций и познакомить учащихся с их графиками.

Изучение темы начинается с вводного повторения, в ходе которого напоминаются основные формулы тригоно­метрии, известные из курса алгебры, и выводятся неко­торые новые формулы. От учащихся не требуется точного запоминания всех формул. Предполагается возможность использования различных справочных материалов: учеб­ника, таблиц, справочников.

Особое внимание следует уделить работе с единичной окружностью. Она становится основой для определения си­нуса и косинуса числового аргумента и используется далее для вывода свойств тригонометрических функций и реше­ния тригонометрических уравнений.

Систематизируются сведения о функциях и графиках, вводятся новые понятия, связанные с исследованием функ­ций (экстремумы, периодичность), и общая схема исследо­вания функций. В соответствии с этой общей схемой про­водится исследование функций синус, косинус, тангенс и строятся их графики.


Требования к математической подготовке

В результате изучения темы учащиеся должны:

знать:

• область определения и множество значений элементарных тригонометрических функций;

• тригонометрические функции, их свойства и графики;

уметь:

• находить область определения и множество значений тригонометрических функций;

• множество значений тригонометрических функций вида kf(x) m, где f(x) - любая тригонометрическая функция;

• доказывать периодичность функций с заданным периодом;

• исследовать функцию на чётность и нечётность;

• строить графики тригонометрических функций;

• совершать преобразование графиков функций, зная их свойства;

• решать графически простейшие тригонометрические уравнения и неравенства


2. Производная

Производная. Производные суммы, произведения и част­ного. Производная степенной функции с целым показате­лем. Производные синуса и косинуса.

Основные цели:

  • ввести понятие производной;

  • научить находить производные функций в случаях, не тре­бующих трудоемких выкладок.

При введении понятия производной и изучении ее свойств следует опираться на наглядно-интуитивные пред­ставления учащихся о приближении значений функции к некоторому числу, о приближении участка кривой к пря­мой линии и т. п.

Формирование понятия предела функции, а также уме­ние воспроизводить доказательства каких-либо теорем в данном разделе не предусматриваются. В качестве примера вывода правил нахождения производных в классе рассмат­ривается только теорема о производной суммы, все осталь­ные теоремы раздела принимаются без доказательства. Важно отработать достаточно свободное умение применять эти теоремы в несложных случаях.

В ходе решения задач на применение формулы произ­водной сложной функции можно ограничиться случаем f(kx + Ь): именно этот случай необходим далее.

Требования к математической подготовке

В результате изучения темы учащиеся должны:

знать:

• понятие производной функции, физического и геометрического смысла производной;

• понятие производной степени, корня;

• правила дифференцирования;

• формулы производных элементарных функций;

• уравнение касательной к графику функции;

• алгоритм составления уравнения касательной;

уметь:

• вычислять производную степенной функции и корня;

• находить производные суммы, разности, произведения, частного;

• производные основных элементарных функций;

• находить производные элементарных функций сложного аргумента;

3. Применение производной

Геометрический и механический смысл производной. Применение производной к построению графиков функций и решению задач на отыскание наибольшего и наименьше­го значений.

Основная цель:

  • ознакомить с простейшими мето­дами дифференциального исчисления;

  • выработать умение применять их для исследования функций и построения графиков.

Опора на геометрический и механический смысл произ­водной делает интуитивно ясными критерии возрастания ?и убывания функций, признаки максимума и минимума.

Основное внимание должно быть уделено разнообразным задачам, связанным с использованием производной для ис­следования функций. Остальной материал (применение производной к приближенным вычислениям, производная в физике и технике) дается в ознакомительном плане.

Требования к математической подготовке

В результате изучения темы учащиеся должны:

знать:

• понятие стационарных, критических точек, точек экстремума;

• как применять производную к исследованию функций и построению графиков;

• как исследовать в простейших случаях функции на монотонность, находить наибольшее и наименьшее значения функции;

уметь:

• находить интервалы возрастания и убывания функций;

• строить эскиз графика непрерывной функции, определённой на отрезке;

• находить стационарные точки функции, критические точки и точки экстремума;

• применять производную к исследованию функций и построению графиков;

• находить наибольшее и наименьшее значение функции;

4. Первообразная и интеграл

Первообразная. Первообразные степенной функции с це­лым показателем (п hello_html_3750bfcb.gif-1), синуса и косинуса. Простейшие правила нахождения первообразных.

Площадь криволинейной трапеции. Интеграл. Формула Ньютона — Лейбница. Применение интеграла к вычисле­нию площадей и объемов.

Основные цели:

  • ознакомить с интегрированием как операцией, обратной дифференцированию;

  • показать применение интеграла к решению геометрических задач.

Задача отработки навыков нахождения первообразных не ставится, упражнения сводятся к простому применению таблиц и правил нахождения первообразных.

Интеграл вводится на основе рассмотрения задачи о пло­щади криволинейной трапеции и построения интегральных сумм. Формула Ньютона — Лейбница вводится на основе наглядных представлений.

В качестве иллюстрации применения интеграла рассмат­риваются только задачи о вычислении площадей и объемов. Следует учесть, что формула объема шара выводится при изучении данной темы и используется затем в курсе гео­метрии.

Материал, касающийся работы переменной силы и на­хождения центра масс, не является обязательным.

При изучении темы целесообразно широко применять графические иллюстрации.

Требования к математической подготовке

В результате изучения темы учащиеся должны:

знать:

• понятие первообразной, интеграла;

• правила нахождения первообразных;

• таблицу первообразных;

• формулу Ньютона- Лейбница;

• правила интегрирования;

уметь:

• проводить информационно-смысловой анализ прочитанного текста в учебнике, участвовать в диалоге, приводить примеры; аргументировано отвечать на поставленные вопросы, осмысливать ошибки и их устранять;

• доказывать, что данная функция является первообразной для другой данной функции;

• находить одну из первообразных для суммы функций и произведения функции на число, используя справочные материалы;

• выводить правила отыскания первообразных;

• изображать криволинейную трапецию, ограниченную графиками элементарных функций;

• вычислять интеграл от элементарной функции простого аргумента по формуле Ньютона Лейбница с помощью таблицы первообразных и правил интегрирования;

• вычислять площадь криволинейной трапеции, ограниченной прямыми x = a, х = b, осью Ох и графиком квадратичной функции;

• находить площадь криволинейной трапеции, ограниченной параболами;

• вычислять путь, пройденный телом от начала движения до остановки, если известна его скорость.


5. Элементы комбинаторики
Табличное и графическое представление данных. Числовые характеристики рядов данных.
Поочерёдный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля.
Основные цели:

  • формирование представлений о научных, логических, комбинаторных методах решения математических задач;

  • формирование умения анализировать, находить различные способы решения одной и той же задачи, делать выводы;

  • развитие комбинаторно-логического мышления.

Требования к математической подготовке


В результате изучения темы учащиеся должны:
знать:

  • понятие комбинаторной задачи и основных методов её решения (перестановки, размещения, сочетания без повторения и с повторением);

  • понятие логической задачи;

  • приёмы решения комбинаторных, логических задач;

  • элементы графового моделирования;
    уметь:

  • использовать основные методы решения комбинаторных, логических задач;

  • разрабатывать модели методов решения задач, в том числе и при помощи графового моделирования;

  • переходить от идеи задачи к аналогичной, более простой задаче, т.е. от основной постановки вопроса к схеме;

  • ясно выражать разработанную идею задачи.

7. Знакомство с вероятностью
Элементарные и сложные события. Рассмотрение случаев: вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применение вероятностных методов.
Основные цели:

  • формирование представления о теории вероятности, о понятиях: вероятность, испытание, событие (невозможное и достоверное), вероятность событий, объединение и пересечение событий, следствие события, независимость событий;

  • формирование умения вычислять вероятность событий, определять несовместные и противоположные события;

  • овладение умением выполнять основные операции над событиями;

  • овладение навыками решения практических задач с применением вероятностных методов.

Требования к математической подготовке


В результате изучения темы учащиеся должны:
знать:

  • понятие вероятности событий;

  • понятие невозможного и достоверного события;

  • понятие независимых событий;

  • понятие условной вероятности событий;

  • понятие статистической частоты наступления событий;
    уметь:

  • вычислять вероятность событий;

  • определять равновероятные события;

  • выполнять основные операции над событиями;

  • доказывать независимость событий;

  • находить условную вероятность;

  • решать практические задачи, применяя методы теории вероятности.


6.Повторение. Решение задач




Раздел, название урока в

поурочном планировании

Дидактические единицы образовательного процесса

Тип урока

Коли-

чество

часов

Дата

Корректи

ровка


§1. Тригонометрические функции



18



1

2

3

4

Синус, косинус, тангенс и котангенс. Решение простейших тригонометрических уравнений (повторение)


Знать определения синуса, косинуса, тангенса и котангенса, основные тригонометрические формулы. Уметь решать простейшие тригонометрические уравнения



Комбинированные уроки: повторение, закрепление


4



5

6

Тригонометрические функции и их графики (ООФ и ОЗФ)


Знать понятия тригонометрических функций, их графиков.

Уметь строить графики функций

Изучение нового материала. Беседа. Практическая работа. Самоконтроль.

2



7

8

Четные и нечетные функции. Периодичность тригонометрических функций


Знать понятия четной и нечетной функции, расположение их графиков, периодической функции

Уметь строить графики функций.

Уроки усвоения новых знаний, умений и навыков. Уроки практикумы. Проверочная С/Р.

2



9

10

11

Свойства функции sin x = у


Знать свойства функции, понятия возрастания и убывания функций, экстремума функции.

Уметь применять эти понятия при чтении и построении графика функции.

Комбинированные уроки: лекция, практикум, проверочная.

3



12

13


Свойства функции cos х = у

Знать свойства функции, понятия возрастания и убывания функций, экстремума функции.

Уметь применять эти понятия при чтении и построении графика функции.

Комбинированные уроки: лекция, практикум, проверочная.

2



14

15

Свойства функции tq x = у

Знать свойства функции, понятия возрастания и убывания функций, экстремума функции.

Уметь применять эти понятия при чтении и построении графика функции.

Комбинированные уроки: лекция, практикум, проверочная.

2



16

Обратные тригонометрические функции


Знать свойства обратных функции, понятия возрастания и убывания функций, экстремума функции.

Уметь применять эти понятия при чтении и построении графика функции.

Комбинированные

уроки: лекция, практикум, проверочная.

1



17

Урок обобщения и систематизации знаний



1



18

Контрольная работа № 1

Проверить усвоение учащимися изученного материала

Урок контроля, оценки знаний учащихся. Фронтальный тематический контроль.

1




§ 2. Производная



16



19

20

Понятие о производной


Знать правила дифференцирования. Уметь применять их при нахождении производных.

Комбинированные уроки: лекция, практикум, проверочная.

2



21

22

Производная степенной функции


Знать правило нахождения ее производной.

Изучение нового материала. Беседа. Практическая работа. Самоконтроль

2



23

24

Правила дифференцирования

Знать правила дифференцирования. Уметь применять их при нахождении производных.

Комбинированные уроки: изучение и первичное закрепление новых знаний.


2



25

Производная сложной функции


Знать понятие сложной функции и правило нахождения ее производной.

Комбинированные уроки: лекция, практикум, проверочная.

1



26

27

28



Производные

-тригонометрических функций

-показательной функции

-логарифмической функции


Знать формулы нахождения производных тригонометрических, логарифмической, показательной функций

Уметь применять изученные формулы

Изучение нового материала. Беседа. Практическая работа. Самоконтроль

3



29

30

31

32

Геометрический смысл производной

Знать понятие приращения аргумента и приращения функции

Уметь вычислять приращения аргумента и приращения функции, а также углового коэффициента. Уравнение касательной

Комбинированные уроки: лекция, практикум, проверочная.

4




33

Урок обобщения и систематизации знаний



1



34


Контрольная работа 2.

Проверить усвоение учащимися изученного материала

Урок контроля, оценки знаний учащихся. Фронтальный тематический контроль.

1




§ 3. Применение производной к исследованию функции



16



35

36


Возрастание и убывание функции


Знать понятие непрерывной функции на промежутке, ее свойство знакопостоянства.

Уметь применять метод интервалов для решения неравенств.

Комбинированные уроки: изучение и первичное закрепление новых знаний.


2



37

38

39


Экстремумы функции


Знать понятие точек экстремума

Уметь находить точки экстремума

Комбинированные уроки: лекция, практикум, проверочная.

3



40

41

42




Применение производной к построению графиков функций


Знать схему исследования функции для построения ее графика с помощью производной. Уметь строить графики функций

Комбинированные уроки: практикум, проверочная.

5



43

44

45

Наибольшее и наименьшее значение функции


Знать правило нахождения наибольшего и наименьшего значения функции. Уметь решать практические задачи.


Комбинированные уроки: лекция, практикум, проверочная..


3



46

47

Выпуклость графика функции, точки перегиба

Уметь находить интервалы выпуклости функции, точки перегиба

Комбинированные уроки: лекция, практикум

2



48

49

Урок обобщения и систематизации знаний



2





50

Контрольная работа3

Проверить усвоение учащимися изученного материала

Урок контроля, оценки знаний учащихся. Фронтальный тематический контроль.

1




§4. Интеграл



13



51

52

Определение первообразной.


Знать понятие первообразной.

Знать на конкретных примерах как проверить, является ли данная функция F первообразной для данной функции f на данном промежутке.

Знать признак постоянства функции; основное свойство первообразных и геометрический смысл его.

Уметь с помощью таблицы находить общий вид первообразной, закрепить этот навык при решении упражнений.

Комбинированные уроки: лекция, практикум, проверочная

2



53

54

55

Правила нахождения первообразных.


Знать правила нахождения первообразных и упражнять учащихся в их применении.

Уметь находить первообразную, график которой проходить через данную точку и первообразные функции в случаях, непосредственно сводящиеся к применению таблицы первообразных и трех правил нахождения первообразных.

Уроки усвоения новых знаний, умений и навыков. Уроки практикумы. Проверочная С/Р.

3



56

57

58

Площадь криволинейной трапеции. Интеграл

Знать понятие криволинейной трапеции рассмотреть ее площадь.

Уметь находить площадь криволинейной трапеции

Комбинированные уроки: лекция, практикум, проверочная.

3



59

60

Интеграл. Формула Ньютона – Лейбница.


Знать, что такое интеграл, формулу Ньютона – Лейбница.

Уметь вычислять площади криволинейных трапеций

Уметь решать более сложные упражнения на нахождение площади криволинейной трапеции


Комбинированные уроки: лекция, практикум, проверочная

2



61

Применение интеграла.



Уметь находить объемы тел фигур вращения.


Уроки усвоения новых знаний, умений и навыков. Уроки практикумы. Проверочная С/Р.

1



62

Урок обобщения и систематизации знаний



1



63

Контрольная работа 4

Проверить усвоение учащимися изученного материала

Урок контроля, оценки знаний учащихся. Фронтальный тематический контроль.

1




§ 5.Элементы комбинаторики



15



66

Комбинаторные задачи



1



67


Перестановки

Знать понятие перестановок.

Уметь применять знание определения перестановки при решении задач

Комбинированные уроки: изучение и первичное закрепление новых знаний.


1



68

Размещения


Знать понятие размещения

Уметь применять знание определения размещения при решении задач



Комбинированные уроки: лекция, практикум, проверочная.

1



69

70

Сочетания

Знать понятие сочетания.

Уметь применять знание определения сочетания при решении задач

Изучение нового материала. Беседа. Практическая работа. Самоконтроль

2



71

Биноминальная формула Ньютона

Уметь применять формулу бинома Ньютона при решении задач


1



72

73


Понятие события. Комбинация событий

Знать понятие вероятности событий. Уметь применять знание определения вероятности событий при решении задач



2



74

75

Вероятность события. Сложение и умножение вероятностей

Знать понятие условной вероятности, независимых событий

Уметь применять знание определения условной вероятности, независимых событий при решении задач


Изучение нового материала. Беседа. Практическая работа. Самоконтроль

2



76

77

Статистическая вероятность

Знать понятие статистической вероятности

Комбинированные уроки: изучение и первичное закрепление новых знаний.


2



78

79

Статистика

Уметь решать статистические задачи


2



80

Урок обобщения и систематизации знаний

Проверить усвоение учащимися изученного материала

Урок контроля, оценки знаний учащихся. Фронтальный тематический контроль.


1





§ 8. Итоговое повторение



20







1



81

82

Тригонометрические функции

Повторить понятия тригонометрических функций, свойства графиков.

Уметь строить графики функций


2




83

84

Производные. Правила нахождения производных Применение производной к решению задач


Уметь исследовать функцию с помощью производной и строить графики функций.

Урок обобщения и систематизации знаний

2



85

86


Первообразная. Интеграл. Площадь криволинейной трапеции.

Уметь находить первообразную и площадь криволинейной трапеции

Урок обобщения и систематизации знаний

2



87

88

89

Решение различных видов уравнений.

Уметь решать уравнения

Урок обобщения и систематизации знаний

3



90

91

92

93

Решение текстовых задач

Уметь решать различные виды задач

Урок обобщения и систематизации знаний

4



94

95

96

Работа с графиками элементарных функций

Уметь строить графики различных функций и знать их свойства

Урок обобщения и систематизации знаний

3



97

98

99

100

101

102



Разбор вариантов ЕГЭ


Урок обобщения и систематизации знаний


6







Программа рассчитана на 68 часов в год .


  • контрольных работ: 4

  • зачетов: 4


Статус документа

Цели изучения курса:

  • формирование представлений об идеях и методах математики; о математике как универ­сальном языке науки, средстве моделирования явлений и процессов;

  • овладение языком математики в устной и письменной формах, математическими знания­ми и умениями, необходимыми для изучения школьных естественнонаучных дисциплин, про­должения образования и освоения избранной специальности на современном уровне;

  • развитие логического мышления, алгоритмической культуры, пространственного вообра­жения, математического мышления и интуиции, творческих способностей, необходимых для продолжения образования и для самостоятельной деятельности в области математики и ее при­ложений в будущей профессиональной деятельности;

  • воспитание средствами математики культуры личности через знакомство с историей раз­вития математики и эволюцией математических идей; через понимание значимости математики для научно-технического прогресса.

Планируемый уровень подготовки учащихся

В результате изучения геометрии ученик должен знать/понимать:

  • возможности геометрии для описания свойств реальных предметов и их взаимного рас­положения;

  • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

  • роль аксиоматики в математике; возможность построения математических теорий на ак­сиоматической основе; значение аксиоматики для других областей знания и для практики;

уметь:

  • соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; различать и анализировать взаимное расположение фигур;

  • изображать геометрические фигуры и тела, выполнять чертеж по условию задачи;

  • решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригономет­рический аппарат;

  • проводить доказательные рассуждения при решении задач, доказывать основные теоре­мы курса;

  • вычислять линейные элементы и углы в пространственных конфигурациях, объемы и площади поверхностей пространственных тел и их простейших комбинаций;

  • строить сечения многогранников и изображать сечения тел вращения.



СОДЕРЖАНИЕ ОБУЧЕНИЯ

1. Векторы в пространстве

Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы.

Основная цель — закрепить известные учащимся из курса планиметрии сведения о векторах и действиях над ними, ввести понятие компланарных векторов в простран­стве и рассмотреть вопрос о разложении любого вектора по трем данным некомпланарным векторам.

Основные определения, относящиеся к действиям над векторами в пространстве, вводятся так же, как и для векторов на плоскости. Поэтому изложение этой части материала является достаточно сжатым. Более подробно рассматриваются вопросы, характерные для векторов в пространстве: компланарность векторов, правило паралле­лепипеда сложения трех некомпланарных векторов, разло­жение вектора по трем некомпланарным векторам.

Требования к математической подготовке


Уровень обязательной подготовки обучающегося

  •   Уметь выполнять сложение, вычитание векторов в пространстве, умножение вектора на число.

  • Уметь решать простейшие задачи с применением векторов.

.


2. Метод координат в пространстве. Движения
Координаты точки и координаты вектора. Скалярное

произведение векторов. Движения.

Основная цель — сформировать умение учащихся применять векторно-координатный метод к решению задач на вычисление углов между прямыми и плоскостями и рас­стояний между двумя точками, от точки до плоскости.

Данный раздел является непосредственным продолже­нием предыдущего. Вводится понятие прямоугольной си­стемы координат в пространстве, даются определения ко­ординат точки и координат вектора, рассматриваются простейшие задачи в координатах. Затем вводится ска­лярное произведение векторов, кратко перечисляются его свойства (без доказательства, поскольку соответствующие доказательства были в курсе планиметрии) и выводятся формулы для вычисления углов между двумя прямыми, между прямой и плоскостью. Дан также вывод уравне­ния плоскости и формулы расстояния от точки до плос­кости.

В конце раздела изучаются движения в пространстве: центральная симметрия, осевая симметрия, зеркальная симметрия. Кроме того, рассмотрено преобразование подо­бия.

Требования к математической подготовке


Уровень обязательной подготовки обучающегося

  •   Уметь выполнять чертежи по условию стереометрической задачи.

  • Понимать стереометрические чертежи.

  • Уметь решать простейшие стереометрические задачи на нахождение геометрических величин (длин, углов и т.п.).

  • Уметь решать простейшие задачи координатным методом.


3. Цилиндр, конус, шар


Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усеченный конус. Сфера и шар. Уравнение сферы. Взаимное располо­жение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.

Основная цель — дать учащимся систематические сведения об основных телах и поверхностях вращения — цилиндре, конусе, сфере, шаре.

Изучение круглых тел (цилиндра, конуса, шара) и их поверхностей завершает знакомство учащихся с основными пространственными фигурами. Вводятся понятия цилинд­рической и конической поверхностей, цилиндра, конуса, усеченного конуса. С помощью разверток определяются площади их боковых поверхностей, выводятся соответству­ющие формулы. Затем даются определения сферы и шара, выводится уравнение сферы и с его помощью исследуется вопрос о взаимном расположении сферы и плоскости. Пло­щадь сферы определяется как предел последовательности площадей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани. В задачах рассматриваются различные комбинации круг­лых тел и многогранников, в частности описанные и впи­санные призмы и пирамиды.

Требования к математической подготовке

 

Уровень обязательной подготовки обучающегося

  • Уметь распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями , изображениями.

  • Уметь анализировать в простейших случаях взаимное расположение объектов в пространстве.

  • Изображать основные многоугольники и круглые тела; выполнять чертежи по условию задач.

  • Решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей).

  • Использовать при решении стереометрических задач планиметрические факты и методы;

  • Проводить доказательные рассуждения в ходе решения задач.


4. Объемы тел


Объем прямоугольного параллелепипеда. Объемы пря­мой призмы и цилиндра. Объемы наклонной призмы, пи­рамиды и конуса. Объем шара и площадь сферы. Объемы шарового сегмента, шарового слоя и шарового сектора.

Основная цель — ввести понятие объема тела и выве­сти формулы для вычисления объемов основных многогран­ников и круглых тел, изученных в курсе стереометрии.

Понятие объема тела вводится аналогично понятию пло­щади плоской фигуры. Формулируются основные свойства объемов и на их основе выводится формула объема пря­моугольного параллелепипеда, а затем прямой призмы и цилиндра. Формулы объемов других тел выводятся с по­мощью интегральной формулы. Формула объема шара ис­пользуется для вывода формулы площади сферы.

5. Обобщающее повторение


Требования к математической подготовке

 

В результате изучения геометрии на базовом уровне ученик должен

Знать/понимать:

  • значение математической науки для решения задач, возникающих в теории и практике: широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;


  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; возникновения и развития геометрии;


  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности.


Уметь:

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями , изображениями

  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многоугольники и круглые тела; выполнять чертежи по условию задач;

  • строить простейшие сечения куба , призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов)

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.




п/п

Раздел, название урока в

поурочном планировании

Дидактические единицы образовательного процесса

Тип урока

Коли-

чество

часов

Дата

Примечание


Глава IV. Векторы в пространстве



6



1

Понятие вектора в пространстве


Знать правила сложения и умножения векторов, умножение вектора на число, правило сложения для трех некомпланарных векторов

Уметь выполнять сложение, вычитание векторов в пространстве, умножение вектора на число.

Уметь решать простейшие задачи с применением векторов..




1




2

3


Сложение и вычитание векторов. Умножение вектора на число

Комбинированные уроки: изучение и первичное закрепление новых знаний.

2




4

5


Компланарные векторы

Усвоение изученного материала в процессе решения задач. С/Р обучающего характера с проверкой на уроке. Самоконтроль.

2



6

Зачет №4

Уметь применять изученную теорию при решении задач

Уметь применять изученную теорию при решении задач

1




Глава V. Метод координат в пространстве



15



7

8

9

10


Координаты точки и координаты вектора

Знать понятие прямоугольной системы координат

Знать формулы для нахождения координат середины отрезка, длины вектора по его координатам, расстояния между точками

Знать понятие скалярного произведения

Уметь строить точку, зная ее координаты, и определять координаты точки, построенной в прямоугольной системе координат

Уметь находить координаты вектора, зная координаты его начала и конца

Уметь находить координаты середины отрезка, длину вектора по его координатам, расстояние между точками

Уроки усвоения новых знаний, умений и навыков. МД. С/Р.

4



11

12

13

14

15


Скалярное произведение векторов

Уроки усвоения новых знаний, умений и навыков. Уроки практикумы. Фронтальный письменный тематический контроль


5





16

17

18

19


20



Движение.



Контрольная работа № 1

Уметь применять изученную теорию при решении задач

Урок контроля, оценки знаний учащихся. Фронтальный письменный тематический контроль.

4


1



21

Зачет №5

Уметь применять изученную теорию при решении задач

Урок контроля, оценки знаний учащихся. Фронтальный письменный тематический контроль.

1




Глава VI. Цилиндр, конус, шар








16



22

23

24

Цилиндр

Знать понятия цилиндра, элементов цилиндра,

Знать формулу площади поверхности

Уметь находить площади поверхности цилиндра

Усвоение изученного материала в процессе решения задач. Самоконтроль, ИК

3



25

26

27

28



Конус

Знать понятия конуса, элементов конуса

Знать формулу площади поверхности конуса

Уметь находить площадь поверхности конуса

Усвоение изученного материала в процессе решения задач. Самоконтроль, ИК

4



29

30

31

32

33


34

35


Сфера




Решение задач.

Знать понятия сферы, уравнение сферы, взаимное расположение сферы и плоскости



Уметь применять изученный материал при решении задач


5



2



36


Контрольная работа №2

Уметь применять изученную теорию при решении задач

Урок контроля, оценки знаний учащихся. Фронтальный письменный тематический контроль.

1



37


Зачет

Уметь применять изученную теорию при решении задач

Урок контроля, оценки знаний учащихся.

1




ГЛАВА VII Объемы тел



17



38

39


Объем прямоугольного параллелепипеда

Знать свойства площадей и объемов, формулы объема прямоугольного параллелепипеда, объема наклонного параллелепипеда

Уметь применять формулы объема призмы при решении задач


Урок усвоения новых знаний, умений и навыков.

2



40

41

42


Объем прямой призмы и цилиндра

Знать объем призмы,

Уметь использовать формулу объема при решении задач


Урок усвоения новых знаний, умений и навыков. С/Р обучающего характера. Индивидуальный контроль

3



43

44

45

46

47


Объем наклонной призмы, пирамиды и косинуса


Урок усвоения новых знаний, умений и навыков.

5



48

49

50

51

52

Объем шара и площадь сферы

Знать формулы объема шара, сегмента, сектора, площади объемов шарового сегмента и сектора

Уметь применять эти формулы при решении задач

Урок усвоения новых знаний, умений и навыков.

5



53

Контрольная работа № 3

Уметь применять все изученные теоремы при решении задач

Урок контроля, оценки и коррекции знаний учащихся.

1



54

Зачет

Уметь применять все изученные теоремы при решении задач

Урок контроля, оценки и коррекции знаний учащихся.

1




Заключительное повторение курса геометрии 11 класса



14




55

56

57

58

59




Итоговое повторение курса планиметрии.

Треугольники, четырехугольники Окружность

Метод координат. Векторы Тестирование

Знать основные понятия и теоремы планиметрии

Уметь применять теоремы и формулы при решении задач

Урок систематизации и проверки знаний

5




60

61

62

63

64

Итоговое повторение курса стереометрии. Метод координат и векторы в пространстве. Взаимное расположение прямых и плоскостей в пространстве Тестирование

Знать основные понятия и теоремы стереометрии

Уметь применять теоремы и формулы при решении задач

Урок систематизации и проверки знаний

5



65

Итоговая контрольная работа

Уметь применять полученные знания при решении задач

Урок проверки знаний

1




66

67

68

Разбор заданий ЕГЭ

Уметь применять полученные знания при решении тестов

Урок проверки знаний

3





Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

Краткое описание документа:

Рабочая программа по математике разработана на основе примерных программ среднего (полного) общего образования, авторских программ под редакцией Т.А Бурмистровой (алгебра и начала математического анализа,  геометрия),

МО РФ в соответствии с требованиями федерального компонента Государственного образовательного стандарта среднего (полного) общего образования

 

(Москва «Просвещение», 2011г., входит в УМК «Школа России»)

 

Алгебра и начала анализа 10-11. / / Ш.А.Алимов, Ю.А.Калягин / М.: Просвещение, 2011

Л.С.Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Л.С. Киселев, Э.Г. Поняк,   учеб. для 10-11 кл. общеобразоват. учреждений

Количество часов:

                 

-   на учебный год: 170

-   в неделю: 5

-            -   контрольных работ: 11

 

 

 

 

Автор
Дата добавления 12.04.2015
Раздел Математика
Подраздел Рабочие программы
Номер материала 481387
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх