Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике (12 класс)

Рабочая программа по математике (12 класс)

В ПОМОЩЬ УЧИТЕЛЮ ОТ ПРОЕКТА "ИНФОУРОК":
СКАЧАТЬ ВСЕ ВИДЕОУРОКИ СО СКИДКОЙ 86%

Видеоуроки от проекта "Инфоурок" за Вас изложат любую тему Вашим ученикам, избавив от необходимости искать оптимальные пути для объяснения новых тем или закрепления пройденных. Видеоуроки озвучены профессиональным мужским голосом. При этом во всех видеоуроках используется принцип "без учителя в кадре", поэтому видеоуроки не будут ассоциироваться у учеников с другим учителем, и благодарить за качественную и понятную подачу нового материала они будут только Вас!

МАТЕМАТИКА — 603 видео
НАЧАЛЬНАЯ ШКОЛА — 577 видео
ОБЖ И КЛ. РУКОВОДСТВО — 172 видео
ИНФОРМАТИКА — 201 видео
РУССКИЙ ЯЗЫК И ЛИТ. — 456 видео
ФИЗИКА — 259 видео
ИСТОРИЯ — 434 видео
ХИМИЯ — 164 видео
БИОЛОГИЯ — 305 видео
ГЕОГРАФИЯ — 242 видео

Десятки тысяч учителей уже успели воспользоваться видеоуроками проекта "Инфоурок". Мы делаем все возможное, чтобы выпускать действительно лучшие видеоуроки по общеобразовательным предметам для учителей. Традиционно наши видеоуроки ценят за качество, уникальность и полезность для учителей.

Сразу все видеоуроки по Вашему предмету - СКАЧАТЬ

  • Математика

Поделитесь материалом с коллегами:


УТВЕРЖДАЮ: СОГЛАСОВАНО: РАССМОТРЕНО:


Директор школы Зам. Директора по УР На заседании МС


_______/__________ ________/_________ ______/_________


«___»______ 20 ___г «__»__________20__г. « __»_____20___г.




РАБОЧАЯ ПРОГРАММА





По математике 12 класса




Уваровой Татьяны Владимировны

(ФИО)


Учителя математики _Ι категории___

(должность, категория)















2014 - 2015 учебный год





  1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа составлена на основе Федерального базисного учебного плана от 09.03.2004г. № 1312 и Регионального базисного учебного плана образовательных учреждений Тверской области от 14.05.2012г. № 1018/ ПК в соответствии с положениями Закона РФ «Об образовании в Российской Федерации» и учетом обязательного минимума содержания образования.

Рабочая программа ориентирована на использование учебников: «Алгебра и начала математического анализа 10-11», автор Ш.А.Алимов, Москва. «Просвещение».2013г. и «Геометрия 10-11», автор Л.С.Атанасян, Москва. «Просвещение».2013г.




Реализация рабочей программы рассчитана на 102 часа (3 часа в неделю).

На изучение алгебры отводится 2 часа в неделю, т.е. 68 часов за год, на изучение геометрии отводится 1 час в неделю, т.е. 34 часа за год.

В рабочей программе предусмотрено 6 контрольных работ по темам, а также 1 диагностическая и 1 итоговая контрольная работа. Программа конкретизирует содержание предметных тем, предлагает распределение предметных часов по разделам курса, последовательность изучения тем и разделов с учетом межпредметных и внутрипедметных связей, логики учебного процесса, возрастных особенностей учащихся. Отличительной особенностью программы является изложение в ней учебного материала с учетом уровня его усвоения. В программе определены цели по каждой теме, прогнозируются результаты их достижения в соответствии с уровнями содержания учебного материала.

Реализация рабочей программы осуществляется по учебнику «Алгебра и начала математического анализа – 10-11» авторов: Ш.А.Алимов, Ю.М. Колягин, Ю.В. Сидоров, Н.Е. Федорова, М.И. Шабунин. Одна их главных особенностей курса алгебры, представленного в этом учебнике, заключается в том, что в нем реализуется взаимосвязь принципов научности и доступности и уделяется особое внимание обеспечению прочного усвоения основ математических знаний всеми учащимися. Основной теоретический материал излагается с постепенным нарастанием его сложности. Этим достигается необходимая дидактическая и логическая последовательность его построения и возможность научного обоснования основных теоретических положений.

Особенностью курса является также его практическая направленность, которая служит стимулом развития у учащихся интереса к алгебре, а также основой для формирования осознанных математических навыков и умений. «Идеология» курса алгебры делает его органическим продолжением и обобщением курса математики основной школы.

Изложение ведется конкретно-индуктивным методом с постепенным нарастанием роли дедукции, с опорой на практические задачи, мотивирующие полезность изучения видимых математических понятий и иллюстрирующие реальную основу математических абстракций.

Успешному формированию навыков и умений способствует алгоритмическая направленность, простота терминологии и символики, достаточное количество упражнений различной трудности, что позволяет выполнять дифференцированную работу с учащимися на уроке.

Учебник красочно оформлен, удобен в использовании, содержит справочный материал под рубрикой «Краткие исторические сведения» по всем темам курса и предметный указатель. Каждая глава завершается упражнениями для повторения и заданиями для самоконтроля под рубрикой «Проверь себя». В конце учебника приведены упражнения для повторения всего курса 12 класса, а также задачи для внеклассной работы.

На уроках учащиеся могут уверенно овладевать монологической и диалогической речью, умением вступать в речевое общение, участвовать в диалоге (понимать точку зрения собеседника, признавать право на иное мнение), приводить примеры, подбирать аргументы, перефразировать мысль, формулировать выводы.

Для решения познавательных и коммуникативных задач учащимся предлагается использовать различные источники информации, включая энциклопедии, справочники, словари, Интернет-ресурсы и другие базы данных, в соответствии с коммуникативной задачей, сферой и ситуацией общения осознанно выбирать выразительные средства языка и знаковые системы (текст, таблица, схема и др.).

Учащиеся должны уметь обосновывать суждения, давать определения, приводить доказательства, объяснять изученные положения на самостоятельно подобранных конкретных примерах, владеть основными видами публичных выступлений (высказывания, монолог, дискуссия), следовать этическим нормам и правилам ведения диалога, диспута. Предполагается простейшее использование учащимися мультимедийных ресурсов и компьютерных технологий для обработки, передачи, систематизации информации, создания базы данных, презентации результатов познавательной и практической деятельности.

В процессе обучения у школьников должно быть сформировано умение формулировать свои мировоззренческие взгляды, и на этой основе будет осуществляться воспитание гражданственности и патриотизма.

Реализация программы осуществляется по учебнику «Геометрия 10 - 11» авторов: Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Э.Г. Позняк, И.И. Юдина. Практический опыт показывает, что учебник выгодно отличается от других, главное преимущество учебника состоит в том, что он написан настолько просто, ясно, наглядно, доступно, что ученик без учителя может освоить основные понятия геометрии. Благодаря удачному подходу к понятию площади доказательства многих теорем упрощаются, многие задачи решаются короче, экономится время для изучения следующих тем. Для каждого параграфа составлены контрольные вопросы, с помощью которых можно проверить знания. В учебнике много оригинальных приемов изложения, которые делают учебник доступным учащимся и одновременно строгим.

При изучении курса геометрии 12 класса решению задач должно быть уделено большое внимание. Все новые понятия, теоремы, свойства геометрических фигур, способы рассуждений должны усваиваться в процессе решения задач. На решение задач следует отводить в среднем не менее половины каждого урока. Достижению этой цели способствует большое количество и разнообразие задач, содержащихся в учебнике. Основными являются задачи к каждому параграфу. Среди них значительную роль играют практические задания (начертить ту или иную фигуру, измерить те или иные отрезки или углы и т. д.). В конце каждой главы есть 20-30 дополнительных заданий, которые можно использовать как для основной работы (если задач к какому-то параграфу главы окажется недостаточно), так и для повторения материала данной главы. Также в учебнике приведены задачи повышенной трудности, которые можно использовать для индивидуальной работы с учащимися, проявляющими особый интерес к математике. Система задач позволяет развить интерес учащихся к математике с учетом их математической подготовки. Большое внимание уделяется тщательной формулировке задач, нередко приводится несколько решений одной и той же задачи.

Учитывая жесткий лимит учебного времени, объяснение материала и фронтальное решение задач проводится по готовым чертежам.

В целях усиления развивающих функций задач, развития творческой активности учащихся, активизации поисково-познавательной деятельности используются творческие задания, задачи на моделирование, конструирование геометрических фигур, задания практического характера.

В целях развития межпредметных связей, усиления практической направленности предмета включены уроки на пришкольном участке и изготовление моделей геометрических фигур в школьной мастерской на уроке труда.



Цели курса:


- формирование представлений о математике как универсальном языке;

- развитие логического мышления, пространственного воображения, алгоритмической культуры;

- овладение математическими знаниями и умениями, необходимыми в повседневной жизни и для изучения школьных естественных дисциплин на базовом уровне;

- воспитание средствами математики культуры личности;

- понимание значимости математики для научно-технического прогресса;

-отношение к математике как к части общечеловеческой культуры через знакомство с историей ее развития;

- обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений.


Основные задачи курса:


- обеспечить уровневую дифференциацию в ходе обучения;

- обеспечить базу математических знаний, достаточную для дальнейшего изучения алгебры и геометрии, а также для продолжения образования;

- сформировать устойчивый интерес учащихся к предмету;

- выявить и развивать математические и творческие способности.


Требования к результатам обучения направлены на реализацию деятельностного и личностно ориентированного подходов; освоение учащимися интеллектуальной и практической деятельности; овладение знаниями и умениями, востребованными в повседневной жизни, позволяющими ориентироваться в окружающим мире, значимыми для сохранения окружающей среды и собственного здоровья.





































  1. СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

  1. часа, 3 часа в неделю)



  1. Повторение материала курса алгебры 11класса (2 ч.)

  2. Производная и ее геометрический смысл (16ч).


Определение производной. Производная степенной функции. Правила дифференцирования. Производные некоторых элементарных функций. Геометрический смысл производной.

Основная цель— ввести понятие производной; научить находить производные с помощью формул дифференцирования; научить находить уравнение касательной

к графику функции.

Изложение материала ведется на наглядно-интуитивном уровне: многие формулы не доказываются, а только поясня­ются или принимаются без доказательств. Главное — пока­зать учащимся целесообразность изучения производной и в дальнейшем первообразной (интеграла), так как это необхо­димо при решении многих практических задач, связанных с исследованием физических явлений, вычислением площадей криволинейных фигур и объемов тел с произвольными границами, с построением графиков функций. Прежде всего следует показать, что функции, графиками которых являются кривые, описывают многие важные физические и технические процессы.

Понятия предела последовательности и непрерывности функции формируются на наглядно-интуитивном уровне; правила дифференцирования И формулы производных эле­ментарных функций приводятся без обоснований.


Уровень обязательной подготовки обучающегося

        Понимать механический смысл производной.

    Находить производные элементарных функций, пользуясь таблицей производных.

        Находить производные элементарных функций, пользуясь правилами дифференцирования.

    Понимать геометрический смысл производной.


Уровень возможной подготовки обучающегося

        Овладеть понятием производной (возможно на наглядно-

интуитивном уровне). Усвоить механический смысл производной

        Освоить технику дифференцирования.

        Усвоить геометрический смысл производной.


  1. Применение производной к исследованию функций (16 ч).


Возрастание и убывание функции. Экстремумы функ­ции. Наибольшее и наименьшее значения функции. Производная второго порядка, выпуклость и точки перегиба. Построение графиков функций.

О с н о в н а я цель — показать возможности производ­ной в исследовании свойств функций и построении их гра­фиков.

При изучении материала широко используются знания, полученные учащимися в ходе работы над предыдущей темой.

Обосновываются утверждения о зависимости возраста­ния и убывания функции от знака ее производной на дан­ном промежутке. Вводятся понятия точек максимума и минимума, точек перегиба. учащиеся знакомятся с новы­ми терминами: критические и стационарные точки.

После введения понятий максимума и минимума функ­ции формируется представление о том, что функция может иметь экстремум в точке, в которой она не имеет производ­ной, например, y=IxI в точке х = 0.

Определение вида экстремума предполагается связать с переменой знака производной функции при переходе через точку экстремума. Желательно показать учащимся, что это можно сделать проще - по знаку второй производ­ной: если f "(х) > 0 в некоторой стационарной точке х, то рассматриваемая стационарная точка есть точка миниму­ма; если f "(х) < 0, то эта точка -- точка максимума; если f "(х) = 0, то точка х есть точка перегиба.

Приводится схема исследования основных свойств функции, предваряющая построение графика. Эта схема выглядит так: 1) область определения функции; 2) точки пере­сечения графика с осями координат; 3) производная функ­ции и стационарные точки; 4) промежутки монотонности; 5) точки экстремума и значения функции в этих точках.


Уровень обязательной подготовки обучающегося

        Применять производные для исследования функций на монотонность в несложных случаях.

        Применять производные для исследования функций на экстремумы в несложных случаях.

        Применять производные для исследования функций и построения их графиков в несложных случаях.

  • Применять производные для нахождения наибольших и наименьших значений функции.

Уровень возможной подготовки обучающегося

        Научиться применять дифференциальное исчисление для исследования элементарных и сложных функций и построения их графиков.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.


  1. Цилиндр, конус, шар (13ч).


Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усечённый конус. Сфера и шар. Уравнение сферы. Взаимное располо­жение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.

Основная цель - дать учащимся систематические сведения об основных телах и поверхностях вращения - цилиндре, конусе, сфере, шаре.

Изучение круглых тел (цилиндра, конуса, шара) и их поверхностей завершает знакомство учащихся с основными пространственными фигурами. Вводятся понятия цилиндрической и конической поверхностей, цилиндра, конуса, усеченного конуса. С помощью разверток определяются площади их боковых поверхностей, выводятся соответству­ющие формулы. Затем даются определения сферы и шара, выводится уравнение сферы и с его помощью исследуется вопрос о взаимном расположении сферы и плоскости. Площадь сферы определяется как предел последовательности

площадей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани. В задачах рассматриваются различные комбинации круглых тел и многогранников, в частности описанные и впи­санные призмы и пирамиды.


Уровень обязательной подготовки обучающегося

  • Уметь распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями , изображениями.

  • Уметь анализировать в простейших случаях взаимное расположение объектов в пространстве.

  • Изображать основные многоугольники и круглые тела; выполнять чертежи по условию задач.

  • Решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей).

  • Использовать при решении стереометрических задач планиметрические факты и методы;

  • Проводить доказательные рассуждения в ходе решения задач.

Уровень возможной подготовки обучающегося

  • Уметь анализировать взаимное расположение объектов в пространстве.

  • Решать стереометрические задачи на нахождение геометрических величин (длин, углов, площадей).

  • Строить сечения цилиндра, конуса, шара.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.


  1. Интеграл (10 ч).


Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции. Интеграл и его вычис­ление. Вычисление площадей фигур с помощью интегралов. Применение производной и интеграла для решения физических задач.

О с н о в н а я цель - ознакомить с понятием интеграла и интегрированием как операцией, обратной дифференци­рованию.

Операция интегрирования сначала определяется как операция, обратная дифференцированию, далее вводится понятие первообразной, при этом не вводится ни определе­ние неопределенного интеграла, ни его обозначение. Таблица правил интегрирования (т. е. таблица первообразных) в этом случае естественно получается из таблицы производ­ных. Формулируется утверждение, что все первообразные для функции f (х) имеют вид F (х) + С, где F (х) - первообразная, найденная в таблице. Этот факт не доказывается, а только поясняется.

Связь между первообразной и площадью криволинейной трапеции устанавливается формулой Ньютона - Лейбни­ца. Далее возникает определенный интеграл как предел интегральной суммы; при этом формула Ньютона - Лейб­ница также оказывается справедливой. Таким образом, эта формула является главной: с ее помощью вычисляются определенные интегралы и находятся площади криволи­нейных трапеций.

Простейшие дифференциальные уравнения и примене­ние производной и интеграла к решению физических задач даются в ознакомительном плане.


Уровень обязательной подготовки обучающегося

        Научиться находить первообразные, пользуясь таблицей первообразных.

        Научиться вычислять интегралы в простых случаях.

        Научиться находить площадь криволинейной трапеции.

Уровень возможной подготовки обучающегося

        Освоить технику нахождения первообразных.

        Усвоить геометрический смысл интеграла.

        Освоить технику вычисления интегралов.

        Научиться находить площади фигур в более сложных случаях.


  1. Объемы тел (15ч).


Объем прямоугольного параллелепипеда. Объемы прямой призмы и цилиндра. Объемы наклонной призмы, пи­рамиды и конуса. Объем шара и площадь сферы. Объемы шарового сегмента, шарового слоя и шарового сектора.

Основная цель - ввести понятие объема тела и выве­сти формулы для вычисления объемов основных многогран­ников и круглых тел, изученных в курсе стереометрии.

Понятие объема тела вводится аналогично понятию пло­щади плоской фигуры. Формулируются основные свойства объемов и на их основе выводится формула объема прямоугольного параллелепипеда, а затем прямой призмы и цилиндра. Формулы объемов других тел выводятся с по­мощью интегральной формулы. Формула объема шара ис­пользуется для вывода формулы площади сферы.


Уровень обязательной подготовки обучающегося

  • Уметь проводить доказательные рассуждения в ходе решения задач.

  • Уметь решать простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов).

  • Использовать при решении стереометрических задач планиметрические факты и методы.

  • изображать круглые тела; выполнять чертежи по условию задач.

Уровень возможной подготовки обучающегося

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.


  1. Элементы теории вероятностей (9ч).


Вероятность события. Сложение вероятностей. Вероят­ность произведения независимых событии.

Основная цель - сформировать понятие вероятно­сти случайного независимого события; научить решать задачи на применение теоремы о вероятности суммы двух несовместных событий и на нахождение вероятности произведения двух независимых событий.

В программу включено изучение (частично на интуи­тивном уровне) лишь отдельных элементов теории вероят­ностей. При этом введению каждого понятия предшествует неформальное объяснение, раскрывающее сущность данно­го понятия, его происхождение и реальный смысл. Так вводятся понятия случайных, достоверных и невозможных событий, связанных с некоторым испытанием; определя­ются и иллюстрируются операции над событиями.

Классическое определение вероятности события с равновозможными элементарными исходами формулируется строго, и на его основе (с использованием знаний комбина­торики) решается большинство задач. Понятия геометрической вероятности и статистической вероятности вводи­лись на интуитивном уровне в основной школе.

Независимость событий разъясняется на конкретных примерах.

При изложении материала данного раздела подчеркива­ется прикладное значение теории вероятностей в различных областях знаний и практической деятельности человека.


Уровень обязательной подготовки обучающегося

Знать возможность оценивания вероятности случайного события на основе определения частоты события в ходе эксперимента.

Уметь решать несложные задачи на нахождение вероятности в случае, когда возможные исходы равновероятны.

Уровень возможной подготовки обучающегося

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения учебных и практических задач, используя статистическую вероятность.


  1. Статистика (7ч).


Таблицы распределения значений случайной величины. Наглядное представление распределения случайной величины: полигон частот, диаграммы круговые, линейные, столбчатые, гистограмма. Генеральная совокупность и выборка. Репрезентативная выборка. Характеристики выборки: размах, мода, медиана, среднее. Представление о законе нормального распределения.

Основная цель - сформировать представления о закономерностях в массовых случайных явлениях; выработать умение сбора и наглядного представления статистических данных; обучить нахождению центральных тенденций выборки.

После знакомства с различными видами случайных величин приводятся примеры составления таблиц распределения этих величин по вероятностям, частотам, относительным частотам. На основании таблиц распределения строятся полигоны частот и диаграммы.

Формируется представление о генеральной совокупности, о произвольной и репрезентативной выборках. На учебных выборках, имеющих небольшой размах, формируется умение находить моду, медиану и среднее значение; умение определять - какую выборку имеет смысл характеризовать одной из центральных тенденций.

(Рассматриваются дискретные и непрерывные случайные величины, демонстрируется наглядная интерпретация распределения значений непрерывной случайной величины с помощью гистограммы. Приводятся характеристики выборки - отклонение от среднего, дисперсия, среднее квадратичное отклонение. Формулируется правило трёх сигм.)


Уровень обязательной подготовки обучающегося

  • Уметь извлекать информацию, представленную в таблицах, на диаграммах, графиках.

  • Уметь составлять таблицы.

  • Уметь строить диаграммы и графики.

  • Уметь вычислять средние значения результатов измерений.

Уровень возможной подготовки обучающегося

  • Уметь находить частоту события, используя собственные наблюдения и готовые статистические данные.

  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для решения учебных и практических задач, требующих систематического перебора вариантов.

  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией.


  1. Итоговое повторение курса математики средней школы (14 ч).















































  1. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН


Дата
(полугодие)


п/п

Раздел, тема

Часы

Формы контроля результата



1

Повторение материала курса алгебры 11 класса


2


к/р



2

    1. Производная и её геометрический смысл


16


к/р



3

    1. Применение производной к исследованию функций


16


к/р


4

    1. Цилиндр, конус, шар

13

к/р



5

    1. Интеграл


10


к/р



6

Объёмы тел


15


к/р



7

    1. Элементы теории вероятностей


9


к/р


8

    1. Статистика

7

с/р


9

    1. Итоговое повторение курса математики средней школы

14

к/р



    1. Итого

102

к/р - 8










    1. 4. ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ СРЕДНЕЙ ШКОЛЫ.

В результате изучения математики на базовом уровне ученик должен

знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

  • вероятностный характер различных процессов окружающего мира;

Алгебра

уметь

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

Функции и графики

уметь

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций;

  • описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

  • решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

Начала математического анализа

уметь

  • вычислять производные и первообразные элементарных функций, используя справочные материалы;

  • исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

  • вычислять в простейших случаях площади с использованием первообразной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

Уравнения и неравенства

уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;

  • составлять уравнения и неравенства по условию задачи;

  • использовать для приближенного решения уравнений и неравенств графический метод;

  • изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • построения и исследования простейших математических моделей;

Элементы комбинаторики, статистики и теории вероятностей

уметь

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;

  • вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков;

  • анализа информации статистического характера;

Геометрия

уметь

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.





Рекомендации по оценке знаний и умений обучающихся по математике

Опираясь на эти рекомендации, учитель оценивает знания и умения учащихся с учётом их индивидуальных особенностей.

1.Содержание и объём материала, подлежащего проверке, оп­ределяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять её на практике в знакомых и незнакомых ситуациях.

2.Основными формами проверки знаний и умений учащихся по математике являются письменная контрольная работа и устный опрос. При оценке письменных и устных ответов учитель в первую очередь учитывает показанные учащимися знания и умения. Оценка зависит также от наличия и характера погрешностей, допущенных учащимися.

3.Среди погрешностей выделяются ошибки и недочёты. Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, ука­занными в программе.

К недочётам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, не считающихся в про­грамме основными. Недочётами также считаются: погрешности, ко­торые не привели к искажению смысла полученного учеником зада­ния или способа его выполнения; неаккуратная запись; небрежное выполнение чертежа. Граница между ошибками и недочётами является в некоторой степени условной. При одних обстоятельствах допущенная учащи­мися погрешность может рассматриваться учителем как ошибка, в другое время и при других обстоятельствах — как недочёт.

4.Задания для устного и письменного опроса учащихся со­стоят из теоретических вопросов и задач. Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты я обоснованные выводы, а его изложение и письменная запись математически грамотны и от­личаются последовательностью и аккуратностью. Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно за­писано решение.

5.Оценка ответа учащегося при устном и письменном опросе проводится по пятибалльной системе, т. е. за ответ выставляется одна из отметок: 1 (плохо), 2 (неудовлетворительно), 3 (удов­летворительно), 4 (хорошо), 5 (отлично).

6.Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельству­ют о высоком математическом развитии учащегося; за решение бо­лее сложной задачи или ответ на более сложный вопрос, предло­женные учащемуся дополнительно после выполнения им заданий.


Критерии ошибок

К    г р у б ы м    ошибкам относятся ошибки, которые обнаруживают незнание учащимися формул, правил, основных свойств, теорем и неумение их применять; незнание приемов решения задач, рассматриваемых в учебниках, а также вычислительные ошибки, если они не являются опиской;

К    н е г р у б ы м   ошибкам относятся:  потеря корня или сохранение в ответе  постороннего корня; отбрасывание без объяснений одного из них и равнозначные им;

К    н е д о ч е т а м    относятся:  нерациональное решение, описки, недостаточность или отсутствие пояснений, обоснований в решениях 

Оценка устных ответов

 Ответ оценивается отметкой «5», если ученик:

- полно раскрыл содержание материала в объеме, предусмотрен­ном программой и учебником,

- изложил материал грамотным языком в определенной логиче­ской последовательности, точно используя математическую термино­логию и символику;

- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

- показал умение иллюстрировать теоретические положения конк­ретными примерами, применять их в новой ситуации при выполне­нии практического задания;

- продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при от­работке умений и навыков;

- отвечал самостоятельно без наводящих вопросов учителя. Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по за­мечанию учителя.

Ответ оценивается отметкой «4», если он удовлетворяет в основ­ном требованиям    на оценку «5», но при этом имеет один из недо­статков:

- в изложении допущены небольшие пробелы, не исказившие ма­тематическое содержание ответа;

- допущены один – два недочета при освещении основного содержа­ния ответа, исправленные по замечанию учителя;

- допущены ошибка или более двух недочетов при освещении вто­ростепенных вопросов или в выкладках, легко исправленные по замечанию учителя.

 Отметка «3» ставится в следующих случаях:

- неполно или непоследовательно раскрыто содержание материа­ла, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного ма­териала (определенные «Требованиями к математической подготов­ке учащихся»);

- имелись затруднения или допущены ошибки в определении поня­тий, использовании математической терминологии, чертежах, вы­кладках, исправленные после нескольких наводящих вопросов учителя;

- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обя­зательного уровня сложности по данной теме;

- при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

- не раскрыто основное содержание учебного материала;

- обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;

- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Оценка письменных контрольных работ

Отметка «5» ставится, если:

- работа выполнена полностью;

- в логических  рассуждениях и обосновании решения нет пробе­лов и ошибок; 

- в решении нет математических ошибок (возможна одна неточ­ность, описка, не являющаяся следствием незнания или непо­нимания учебного материала).

Отметка «4» ставится, если:

- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

- допущена одна ошибка или два-три недочета в выкладках, ри­сунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).

Отметка «3» ставится, если:

- допущены более одной ошибки или более двух-трех недоче­тов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме. 

Отметка «2» ставится, если:

- допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мере.









5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ

  1. Алгебра и начала математического анализа : Учеб. для 10-11 кл. общеобразоват учреждений / Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др. - М.: Просвещение, 2013.

  2. Жохов В. И., Макарычев Ю. Н., Миндюк Н. Г. Дидактические материалы по алгебре для 11 класса. - М.: Просвещение, 2009.

  3. Геометрия: Учеб. для 10-11 кл. общеобразоват учреждений/ Л. С. Ата­насян, В. Ф. Бутузов, С. Б. Кадомцев и др. - М.: Просвещение, 2013.

  4. Зив Б. Г., Мейлер В. М. Дидактические материалы по геометрии для 11класса. - М.: просвещение, 2008.

  5. Алгебра. 11 класс: Поурочные планы (по учебнику Ш.А. Алимова и др.)/Авт.-сост. Г.И.Григорьева – Волгоград: Учитель, 2008.

  6. Геометрия. 11 класс: Поурочные планы (по учебнику Л.С.Атанасяна и др.)/Авт.-сост. Г.И.Ковалёва – Волгоград: Учитель, 2007.

  7. Математика. Практикум. 5-11 классы. Электронное учебное издание. М., ООО «Дрофа», ООО «ДОС», 2003.

  8. Видеофильмы по истории развития математики, математических идей.

  9. Коллекция презентаций по курсу «Математика – 12».

  10. Виртуальная школа Кирилла и Мефодия. Уроки геометрии. 11 класс. – М.: ООО «Кирилл и Мефодий», 2005.






























  1. 6. КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

  2. Количество часов на год: в неделю 3 , всего 102



п\п

Тема урока

Кол-во часов

Дата

д/з

Примечание (сам.из)


Повторение материала курса алгебры 11 класса

2




1

Повторение материала курса алгебры 11 класса

1


тест


2

Диагностическая контрольная работа по курсу алгебры 11 класса

1


нет



    1. Глава1. Производная и ее геометрический смысл



16




3

Производная

1


§44


4

Производная степенной функции

2


§45


5

Правила дифференцирования

3


§46


6

Производные некоторых элементарных функций

4


§47


7

Геометрический смысл производной

4


§48


8

Обобщающий урок

1


карточки


9

Контрольная работа по алгебре №1

1


нет



    1. Глава2. Применение производной к исследованию функций



16




10

Возрастание и убывание функции

2


§49


11

Экстремумы функции

3


§50


12

Применение производной к построению графиков функций

4


§51


13

Наибольшее и наименьшее значения функции

4


§52


14

Выпуклость графика функции, точки перегиба

1


§53


15

Обобщающий урок

1


карточки


16

Контрольная работа по алгебре №2

1


нет



    1. Глава3. Цилиндр, конус, шар



13




17

Цилиндр

1


п.59,60


18

Решение задач

2


карточки


19

Конус

1


п.61,62


20

Усеченный конус

1


п.63


21

Решение задач

1


карточки


22

Сфера и шар. Уравнение сферы. Площадь сферы

2


п.64,65,68


23

Взаимное расположение сферы и плоскости. Касательная плоскость к сфере

1


п.66,67


24

Решение задач

2


карточки


25

Решение задач по теме

1


проект


26

Контрольная работа по геометрии №1

1


нет



    1. Глава4. Интеграл



10




27

Первообразная

1


§54


28

Правила нахождения первообразных

3


§55


29

Площадь криволинейной трапеции и интеграл

2


§56


30

Вычисление интегралов

1


§57


31

Вычисление площадей с помощью интегралов

1


§58


32

Обобщающий урок

1


карточки


33

Контрольная работа по алгебре №3

1


нет



    1. Глава5. Объемы тел



15




34

Понятие объема

1


п.74


35

Объем прямоугольного параллелепипеда

1


п.75


36

Объем прямой призмы

1


п.76


37

Объем цилиндра

1


п.77


38

Решение задач

1


карточки


39

Объем наклонной призмы

1


п.78,79


40

Объем пирамиды

1


п.80


41

Объем конуса

1


п.81


42

Решение задач

1


карточки


43

Объем шара

1


п.82


44

Объем шарового сегмента, шарового слоя и шарового сектора

1


п.83


45

Площадь сферы

1


п.84


46

Решение задач

1


карточки


47

Решение задач по теме

1


проект


48

Контрольная работа по геометрии №2

1


нет



Глава6. Элементы теории вероятностей

9




49

События

1


§65


50

Комбинации событий. Противоположное событие

1


§66


51

Вероятность события

1


§67


52

Сложение вероятностей

2


§68


53

Независимые события. Умножение вероятностей

2


§69


54

Статистическая вероятность

2


§70


55

Контрольная работа по алгебре №6

1


нет



Глава7. Статистика

7




56

Случайные величины

2


§71


57

Центральные тенденции

2


§72


58

Меры разброса

2


§73


59

Обобщающий урок

1


нет



    1. 8. Итоговое повторение курса математики средней школы



14




60

Числа и алгебраические выражения

1


карточки


61

Тригонометрические формулы

1


тест


62

Уравнения

2


карточки


63

Неравенства

2


карточки


64

Системы уравнений и неравенств

2


карточки


65

Репетиционная контрольная работа

1


нет


66

Функции и их графики

2


тест


67

Прямые и плоскости в пространстве

1


карточки


68

Многогранники

2


карточки



Итого

102








Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

Краткое описание документа:

Рабочая программа составлена на основе Федерального базисного учебного плана от 09.03.2004г. № 1312 и Регионального базисного учебного плана образовательных учреждений Тверской области от 14.05.2012г. № 1018/ ПК в соответствии с положениями Закона РФ «Об образовании в Российской Федерации» и учетом обязательного минимума содержания образования.

Рабочая программа ориентирована на использование учебников: «Алгебра и начала математического анализа 10-11», автор Ш.А.Алимов, Москва. «Просвещение».2013г. и «Геометрия 10-11», автор Л.С.Атанасян, Москва. «Просвещение».2013г.

      Реализация рабочей программы рассчитана  на 102 часа  (3 часа в неделю). 

На изучение алгебры отводится 2 часа в неделю,  т.е. 68 часов за год, на изучение геометрии отводится 1 час в неделю,  т.е. 34 часа за год.

В рабочей программе предусмотрено 6 контрольных работ по темам, а также 1 диагностическая и 1 итоговая контрольная работа. Программа конкретизирует содержание предметных тем, предлагает распределение предметных часов по разделам курса, последовательность изучения тем и разделов с учетом межпредметных и внутрипедметных связей, логики учебного процесса, возрастных особенностей учащихся. Отличительной особенностью программы является изложение в ней учебного материала с учетом уровня его усвоения. В программе определены цели по каждой теме, прогнозируются результаты их достижения в соответствии с уровнями содержания учебного материала. 

 

Автор
Дата добавления 29.04.2015
Раздел Математика
Подраздел Рабочие программы
Номер материала 502891
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх