Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике ФГОС

Рабочая программа по математике ФГОС

  • Математика

Поделитесь материалом с коллегами:

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
НОВОАНГАРСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА




РАССМОТРЕНО НА СОГЛАСОВАНО: УТВЕРЖДАЮ:

ЗАСЕДАНИИ МО ЗАМ. ДИРЕКТОРА УР ДИРЕКТОР ШКОЛЫ

__________________________. ______________ШМЕЛЬТЕР Л.А. _________ТУРИЙ Е. А

«______»__________ _______Г «____»_____________ _______Г «____»_________ ___Г










РАБОЧАЯ ПРОГРАММА


по математике 5 - 9 классы

(на основе ФГОС ООО)


Срок реализации программы 2015-2020 год.



Пановой Альфии Наильевны

II квалификационная категория

















  1. 2016 учебный год

Структура программы


Программа основного общего образования по математике содержит следую­щие разделы:
- пояснительную записку, в которой определяются общие цели обучения матема­тике в основной школе;

- общую характеристику учебного предмета;

- описание места учебного предмета, курса в учебном плане;

- личностные, метапредметные и предметные результаты освоения учебного предмета «Математика»

- содержание курса, включающее перечень основного изучаемого материала, распределен­ного по содержательным разделам с указанием примерного числа часов на изуче­ние соответствующего материала;

- тематическое планирование с описанием видов учебной деятельности уча­щихся 5–9 классов и указанием примерного числа часов на изучение соответст­вующего материала;
- описание учебно-методического и материально - технического обеспечения образовательного процесса;

- планируемые результаты.


  1. Пояснительная записка

Математическое образование является обязательной и не­отъемлемой ча­стью общего образова­ния на всех ступенях школы.

Рабочая программа предмета «Математика» для основного общего образования разработана на основе:

- нормативных документов:

  1. Об образовании в Российской Федерации : Федеральный закон от 29 декабря 2012 г. № 273-ФЗ.

  2. Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях»: постановление Главного государственного санитарного врача Российской Федерации от 29 декабря 2010 г. № 189, г. Москва ; зарегистрировано в Минюсте РФ 3 марта 2011 г.

  3. Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2013/14 учебный год : приказ Министерства образования и науки Российской Федерации от 19 декабря 2012 г. № 1067, г. Москва.

  4. Примерная основная образовательная программа образовательного учреждения : письмо департамента общего образования Министерства образования науки Российской Федерации от 01 ноября 2011 г. № 03-776.

  5. Федеральный государственный образовательный стандарт основного общего образования : приказ Минобрнауки России от 17 декабря 2010 г. № 1897.

- информационно-методических материалов:

  1. Примерной программы по учебным предметам «Стандарты второго поколения. Математика 5 – 9 класс» – М.: Просвещение, 2011 г.,

  2. «Математика. Сборник рабочих программ 5 – 6 классы», - М.Просвещение, 2014. Составитель Т. А. Бурмистрова.,

  3. «Алгебра. Программы общеобразовательных учреждений. 7 - 9 классы», - М.Просвещение, 2011. Составитель Т. А. Бурмистрова.,

  4. «Геометрия. Программы общеобразовательных учреждений. 7 - 9 классы», - М.Просвещение, 2011. Составитель Т. А. Бурмистрова.

- учебников: по математике для 5—6 классов, по алгебре для 7-9 классов, по геометрии для 7—9 классов.

  1. УМК Н.Я.Виленкин «Математика» 5,6,

  2. УМК Ю.Н.Макарычев « Алгебра» 7-9,

  3. УМК Л.С.Атанасян «Геометрия 7-9».


Обучение математике в основной школе направлено на достижение следующих целей:

I В направлении личностного развития:

  • формирование представлений о математике, как части общечеловече­ской культуры, о значимости математики в раз­витии цивилизации и современ­ного общества;

  • развитие логического и критического мышления, куль­туры речи, способно­сти к умствен­ному эксперименту;

  • формирование интеллектуальной честности и объектив­ности, способно­сти к преодоле­нию мыслительных стереоти­пов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих соци­альную мобиль­ность, способ­ность принимать самостоятель­ные решения;

  • формирование качеств мышления, необходимых для адаптации в современ­ном информа­ционном обществе;

  • развитие интереса к математическому творчеству и ма­тематических способ­ностей;

II В метапредметном направлении:

  • развитие представлений о математике как форме опи­сания и методе позна­ния действи­тельности, создание условий для приобретения первоначаль­ного опыта математиче­ского моделирования;

  • формирование общих способов интеллектуальной дея­тельности, характер­ных для мате­матики и являющихся осно­вой познавательной куль­туры, значимой для различных сфер человеческой деятельности;

III В предметном направлении:

овладение математическими знаниями и умениями, не­обходимыми для про­долже­ния образования, изучения смеж­ных дисциплин, применения в повсе­дневной жизни;

создание фундамента для математического развития, формирования меха­низмов мышле­ния, характерных для мате­матической деятельности.

Задачи:

  • овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

  • способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

  • формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;

  • воспитывать культуру личности, отношение к математики как части общечеловеческой культуры, играющей особую роль в общественном развитии.


Формы организации учебной деятельности учащихся носят индивидуальный характер, предусмотрена работа в парах, работа в парах сменного состава, работа в малых группах. Временные рамки решения многих задач не ограничиваются одним уроком и допускают разные уровни достижения. Для дифференцированного подхода к учащимся используются разноуровневые к/р, домашние проверочные работы для учащихся. Для отработки и проверки знаний запланированы уроки с применением ИКТ (математические диктанты, тестовый контроль, устный счет, объяснение нового материала).

Система уроков условна, но все же выделяются следующие виды:

Урок-лекция. Предполагаются  совместные усилия учителя и учеников для решения общей проблемной познавательной задачи. На таком уроке используется демонстрационный материал на компьютере, разработанный учителем или учениками, мультимедийные продукты.

Урок-практикум. На уроке учащиеся работают над различными заданиями в зависимости от своей подготовленности. Виды работ могут быть самыми разными: письменные исследования,  решение различных задач, практическое применение различных методов решения задач. Компьютер на таких уроках используется как электронный калькулятор, тренажер устного счета, виртуальная лаборатория, источник справочной информации.

Урок-исследование. На уроке учащиеся решают проблемную задачу исследовательского характера аналитическим методом и с помощью компьютера с использованием различных лабораторий.

Комбинированный урок предполагает выполнение работ и заданий разного вида. Урок–игра. На основе игровой деятельности учащиеся познают новое, закрепляют изученное, отрабатывают различные учебные навыки.

Урок решения задач. Вырабатываются у учащихся умения и навыки решения задач на уровне обязательной и возможной подготовке. Любой учащийся может использовать компьютерную информационную базу по методам решения различных задач, по свойствам элементарных функций и т.д.

Урок-тест. Тестирование проводится с целью диагностики пробелов знаний, контроля уровня обученности учащихся, тренировки технике тестирования. Тесты предлагаются как в печатном так и в компьютерном варианте. Причем в компьютерном варианте всегда с ограничением времени.

Урок-зачет. Устный опрос учащихся  по заранее составленным вопросам, а также решение задач разного уровня по изученной теме.

Урок-самостоятельная работа.  Предлагаются разные виды самостоятельных работ.

Урок-контрольная работа. Проводится на двух уровнях: уровень обязательной подготовки - «3», уровень возможной подготовки - «4» и «5».


Формы контроля:

  • Контрольная работа по каждой теме урока;

  • Практическая работа;

  • Тесты;

  • Тематические зачеты;

  • Творческие проекты.



  1. Общая характеристика учебного предмета


Содержание математического образования в основной школе формиру­ется на основе фунда­ментального ядра школь­ного математического образова­ния. Оно в основной школе включает сле­дующие разделы: арифметика, алгебра, функции, вероятность и стати­стика, геометрия. Наряду с этим в него включены два дополнительных раз­дела: логика и множества, математика в историческом развитии, что свя­зано с реализацией целей общеин­теллектуального и обще­культурного разви­тия учащихся. Содержание каждого из этих разделов разворачивается в содержа­тельно-методическую ли­нию, пронизывающую все основные раз­делы содержания ма­тематического образования на данной ступени обуче­ния.

Содержание раздела «Арифметика» служит базой для даль­нейшего изуче­ния учащи­мися математики, способствует разви­тию их логического мышле­ния, формированию уме­ния поль­зоваться алгоритмами, а также приобрете­нию практических навыков, необходи­мых в повседневной жизни. Развитие поня­тия о числе в основной школе связано с рациональ­ными и ир­рациональ­ными числами, формированием первичных пред­ставлений о действительном числе. Завершение числовой линии (систематизация сведений о действитель­ных числах, о комплексных числах), так же как и более сложные вопросы ариф­ме­тики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени об­щего среднего (полного) образования.

Содержание раздела «Алгебра» направлено на формирова­ние у учащихся ма­тематиче­ского аппарата для решения задач из разных разделов матема­тики, смежных предметов, окружа­ющей реальности. Язык алгебры подчерки­вает значение мате­матики как языка для построения математических моделей процессов и явлений реального мира. В задачи изуче­ния алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассужде­ний. Преобразова­ние символьных форм вносит специфический вклад в разви­тие воображе­ния учащихся, их способностей к математическо­му творче­ству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с ир­рациональными выражениями, с тригоно­метрическими функ­циями и преобразова­ниями, входят в содержание курса мате­матики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками кон­кретных зна­ний о функции как важнейшей математической модели для описания и исследования разно­образных процессов. Изучение этого мате­риала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графиче­ский), вно­сит вклад в формирование представлений о роли математики в развитии цивилиза­ции и культуры.

Раздел «Вероятность и статистика» — обязательный ком­понент школь­ного образова­ния, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функцио­нальной грамот­ности - умений восприни­мать и критически анализиро­вать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, про­водить простей­шие вероятностные расчеты. Изучение основ комбинаторики позволит уча­щимся рассматривать случаи, осуществлять перебор и подсчет числа вариан­тов, в том чис­ле в про­стейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о совре­менной кар­тине мира и методах его ис­следования, формируется понима­ние роли статистики как ис­точника социально значимой информации, и закладываются основы вероятностного мышле­ния.

Цель содержания раздела «Геометрия» — развить у учащих­ся пространствен­ное воображе­ние и логическое мышление пу­тем систематиче­ского изучения свойств геометриче­ских фигур на плоскости и в пространстве и применения этих свойств при реше­нии задач вычислительного и конструктив­ного характера. Существенная роль при этом отводится разви­тию геометри­ческой интуиции. Сочетание наглядности со строго­стью явля­ется неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значи­тельной степени несет в себе меж­предметные знания, кото­рые находят применение, как в различных математи­ческих дисципли­нах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представлен­ный в нем мате­риал преимущественно изуча­ется и используется в ходе рассмотре­ния различных вопросов курса. Соответствую­щий материал наце­лен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в уст­ной и письменной речи.

Раздел «Математика в историческом развитии» предназна­чен для формирова­ния представле­ний о математике как части человеческой куль­туры, для общего развития школьни­ков, для создания культурно-историче­ской среды обучения. На него не выделя­ется специальных уроков, усвоение его не контролиру­ется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рас­смотрении проблематики основного содержания математичес­кого образования.


  1. Место учебного предмета в Базисном учебном

(образовательном) плане


Базисный учебный (образовательный) план на изучение математики в основ­ной школе отводит 5 учебных часов в не­делю в течение каждого года обучения, всего 870 уроков.

Согласно Базисного учебного (образовательного) плана в 5—6 клас­сах изуча­ется предмет «Математика» (инте­грированный предмет), в 7—9 классах - «Математика» (включающий разделы «Алгебра» и «Геометрия»)

Предмет «Математика» в 5—6 классах включает арифмети­ческий мате­риал, элементы алгебры и геометрии, а также эле­менты вероятностно-статистиче­ской линии.

Предмет «Математика» в 7 – 9 классах включает в себя некоторые вопросы арифметики, развивающие числовую линию 5–6 классов, алгебраический материал, элементарные функ­ции, элементы вероятностно-статистической линии, а также геометрический мате­риал, традиционно изучаются, евклидова геометрия, элементы векторной алгебры, геометриче­ские преобразования.

Раздел «Алгебра» включает некоторые вопросы арифме­тики, развиваю­щие числовую линию 5—6 классов, собственно алгебраический материал, элементарные функции.

В рамках учебного раздела «Геометрия» традиционно изучаются, евкли­дова геометрия, элементы векторной алгебры, геометрические преобразова­ния.


Распределение учебного времени между этими предметами представлено в таблице.


Года обучения

Кол-во часов в неделю

Кол-во учебных недель

Всего часов за учебный год

5 класс

5

35

175

6 класс

5

35

175

7 класс

5

35

175

8 класс

5

35

175

9 класс

5

34

170




870 часа за курс



Классы

Предметы математического цикла

Количество часов на ступени основного образования

5-6

Математика

350

7-9

Алгебра

312

Геометрия

208

Всего

870


Распределение часов рабочей программы



Арифметика (249 часов)



5 класс

6 класс

7 класс

8 класс

9 класс

Всего часов

НАТУРАЛЬНЫЕ ЧИСЛА

29

16

10



55

ДРОБИ

50

50




100

РАЦИОНАЛЬНЫЕ ЧИСЛА

9

27


2


38

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА




17

4

21

ИЗМЕРЕНИЯ, ПРИБЛИЖЕНИЯ, ОЦЕНКИ

19

13


3


35

Всего:

107

106

10

22

4

249




Алгебра (289 часа)



5 класс

6 класс

7 класс

8 класс

9 класс

Всего часов

АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ

8

13

50

25

5

101

УРАВНЕНИЯ И НЕРАВЕНСТВА

6

9

24

38

31

108

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ





15

15

ЧИСЛОВЫЕ ФУНКЦИИ


2

17

8

22

49

КООРДИНАТЫ

2

8

3

1

2

16

Всего:

16

32

94

72

75

289






Геометрия (212 часов)



5 класс

6 класс

7 класс

8 класс

9 класс

Всего часов

НАЧАЛЬНЫЕ ПОНЯТИЯ И ТЕОРЕМЫ ГЕОМЕТРИИ

10

8

15


4

37

ТРЕУГОЛЬНИК

2


27

18

15

62

ЧЕТЫРЁХУГОЛЬНИКИ, МНОГОУГОЛЬНИКИ

1



14

2

17

ОКРУЖНОСТЬ И КРУГ

3



17

6

26

ИЗМЕРЕНИЕ ГЕОМЕТРИЧЕСКИХ ВЕЛИЧИН

10

3


15

6

34

ВЕКТОРЫ





19

19

ГЕОМЕТРИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ



4

1

12

17

Всего:

26

11

46

65

64

212



Элементы логики, комбинаторики, статистики и теории вероятностей (48 часов)



5 класс

6 класс

7 класс

8 класс

9 класс

Всего часов

ДОКАЗАТЕЛЬСТВО



4


2

6

МНОЖЕСТВА И КОМБИНАТОРИКА

4

4



8

16

СТАТИСТИЧЕСКИЕ ДАННЫЕ

7

6

4

5


22

ВЕРОЯТНОСТЬ





4

4

Всего:

11

10

8

5

14

48

Резерв времени на повторение


5 класс

6 класс

7 класс

8 класс

9 класс

Всего часов

Резерв времени (в том числе на геометрию)

10

11

12

6

13

52



  1. Личностные, метапредметные и предметные результаты освоения учебного

предмета «Математика»

Взаимосвязь результатов освоения предмета «Математика» можно системно представить в виде схемы. При этом обозначение ЛР указывает, что продвижение учащихся к новым образовательным результатам происходит в соответствии с линиями развития средствами предмета.


hello_html_441394f8.gifhello_html_578f4e05.gif


5–9 классы

Личностными результатами изучения предмета «Математика» (в виде следующих учебных курсов: 56 класс – «Математика», 79 класс – «Алгебра» и «Геометрия») являются следующие качества:

– независимость и критичность мышления;

– воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

– система заданий учебников;

– представленная в учебниках в явном виде организация материала по принципу минимакса;

– использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология проблемного диалога, технология продуктивного чтения, технология оценивания.


Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

56-й классы


– самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.


79-й классы


– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;

выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;

составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;

– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);

планировать свою индивидуальную образовательную траекторию;

работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);

– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;

– в ходе представления проекта давать оценку его результатам;

– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

уметь оценить степень успешности своей индивидуальной образовательной деятельности;

давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).


Средством формирования регулятивных УУД служат технология проблемного диалога на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

59-й классы


анализировать, сравнивать, классифицировать и обобщать факты и явления;

осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

создавать математические модели;

– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

вычитывать все уровни текстовой информации.

уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

– понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

– самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;

уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника, позволяющие продвигаться по всем шести линиям развития.

1-я ЛР – Использование математических знаний для решения различных математических задач и оценки полученных результатов.

2-я ЛР – Совокупность умений по использованию доказательной математической речи.

3-я ЛР – Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

4-я ЛР Умения использовать математические средства для изучения и описания реальных процессов и явлений.

5-я ЛР Независимость и критичность мышления.

6-я ЛР Воля и настойчивость в достижении цели.


Коммуникативные УУД:

59-й классы


– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

– в дискуссии уметь выдвинуть контраргументы;

– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Средством формирования коммуникативных УУД служат технология проблемного диалога (побуждающий и подводящий диалог) и организация работы в малых группах, также использование на уроках элементов технологии продуктивного чтения.

Предметными результатами изучения предмета «Математика» являются следующие умения.

5-й класс


Использовать при решении математических задач, их обосновании и проверке найденного решения знание:

  • названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);

  • как образуется каждая следующая счётная единица;

  • названия и последовательность разрядов в записи числа;

  • названия и последовательность первых трёх классов;

  • сколько разрядов содержится в каждом классе;

  • соотношение между разрядами;

  • сколько единиц каждого класса содержится в записи числа;

  • как устроена позиционная десятичная система счисления;

  • единицы измерения величин (длина, масса, время, площадь), соотношения между ними;

  • функциональной связи между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа).

Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;

  • выполнять умножение и деление с 1 000;

  • вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;

  • раскладывать натуральное число на простые множители;

  • находить наибольший общий делитель и наименьшее общее кратное нескольких чисел;

  • решать простые и составные текстовые задачи;

  • выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;

  • находить вероятности простейших случайных событий;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;

  • читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;

  • строить простейшие линейные, столбчатые и круговые диаграммы;

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


6-й класс

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • десятичных дробях и правилах действий с ними;

  • отношениях и пропорциях; основном свойстве пропорции;

  • прямой и обратной пропорциональных зависимостях и их свойствах;

  • процентах;

  • целых и дробных отрицательных числах; рациональных числах;

  • правиле сравнения рациональных чисел;

  • правилах выполнения операций над рациональными числами; свойствах операций.

Сравнивать десятичные дроби;

  • выполнять операции над десятичными дробями;

  • преобразовывать десятичную дробь в обыкновенную и наоборот;

  • округлять целые числа и десятичные дроби;

  • находить приближённые значения величин с недостатком и избытком;

  • выполнять приближённые вычисления и оценку числового выражения;

  • делить число в данном отношении;

  • находить неизвестный член пропорции;

  • находить данное количество процентов от числа и число по известному количеству процентов от него;

  • находить, сколько процентов одно число составляет от другого;

  • увеличивать и уменьшать число на данное количество процентов;

  • решать текстовые задачи на отношения, пропорции и проценты;

  • сравнивать два рациональных числа;

  • выполнять операции над рациональными числами, использовать свойства операций для упрощения вычислений;

  • решать комбинаторные задачи с помощью правила умножения;

  • находить вероятности простейших случайных событий;

  • решать простейшие задачи на осевую и центральную симметрию;

  • решать простейшие задачи на разрезание и составление геометрических фигур;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


7-й класс.

Алгебра


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • натуральных, целых, рациональных, иррациональных, действительных числах;

  • степени с натуральными показателями и их свойствах;

  • одночленах и правилах действий с ними;

  • многочленах и правилах действий с ними;

  • формулах сокращённого умножения;

  • тождествах; методах доказательства тождеств;

  • линейных уравнениях с одной неизвестной и методах их решения;

  • системах двух линейных уравнений с двумя неизвестными и методах их решения.

  • Выполнять действия с одночленами и многочленами;

  • узнавать в выражениях формулы сокращённого умножения и применять их;

  • раскладывать многочлены на множители;

  • выполнять тождественные преобразования целых алгебраических выражений;

  • доказывать простейшие тождества;

  • находить число сочетаний и число размещений;

  • решать линейные уравнения с одной неизвестной;

  • решать системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;

  • решать текстовые задачи с помощью линейных уравнений и систем;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


7-й класс.

Геометрия


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • основных геометрических понятиях: точка, прямая, плоскость, луч, отрезок, ломаная, многоугольник;

  • определении угла, биссектрисы угла, смежных и вертикальных углов;

  • свойствах смежных и вертикальных углов;

  • определении равенства геометрических фигур; признаках равенства треугольников;

  • геометрических местах точек; биссектрисе угла и серединном перпендикуляре к отрезку как геометрических местах точек;

  • определении параллельных прямых; признаках и свойствах параллельных прямых;

  • аксиоме параллельности и её краткой истории;

  • формуле суммы углов треугольника;

  • определении и свойствах средней линии треугольника;

  • теореме Фалеса.

  • Применять свойства смежных и вертикальных углов при решении задач;

  • находить в конкретных ситуациях равные треугольники и доказывать их равенство;

  • устанавливать параллельность прямых и применять свойства параллельных прямых;

  • применять теорему о сумме углов треугольника;

  • использовать теорему о средней линии треугольника и теорему Фалеса при решении задач;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


8-й класс.

Алгебра


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • алгебраической дроби; основном свойстве дроби;

  • правилах действий с алгебраическими дробями;

  • степенях с целыми показателями и их свойствах;

  • стандартном виде числа;

  • функциях hello_html_m32d1edc9.gif, hello_html_m5058ae9b.gif, hello_html_23768637.gif, их свойствах и графиках;

  • понятии квадратного корня и арифметического квадратного корня;

  • свойствах арифметических квадратных корней;

  • функции hello_html_58f5fa8d.gif, её свойствах и графике;

  • формуле для корней квадратного уравнения;

  • теореме Виета для приведённого и общего квадратного уравнения;

  • основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;

  • методе решения дробных рациональных уравнений;

  • основных методах решения систем рациональных уравнений.

  • Сокращать алгебраические дроби;

  • выполнять арифметические действия с алгебраическими дробями;

  • использовать свойства степеней с целыми показателями при решении задач;

  • записывать числа в стандартном виде;

  • выполнять тождественные преобразования рациональных выражений;

  • строить графики функций hello_html_m32d1edc9.gif, hello_html_m5058ae9b.gif, hello_html_23768637.gif и использовать их свойства при решении задач;

  • вычислять арифметические квадратные корни;

  • применять свойства арифметических квадратных корней при решении задач;

  • строить график функции hello_html_58f5fa8d.gif и использовать его свойства при решении задач;

  • решать квадратные уравнения;

  • применять теорему Виета при решении задач;

  • решать целые рациональные уравнения методом разложения на множители и методом замены неизвестной;

  • решать дробные уравнения;

  • решать системы рациональных уравнений;

  • решать текстовые задачи с помощью квадратных и рациональных уравнений и их систем;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


8-й класс.

Геометрия


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • определении параллелограмма, ромба, прямоугольника, квадрата; их свойствах и признаках;

  • определении трапеции; элементах трапеции; теореме о средней линии трапеции;

  • определении окружности, круга и их элементов;

  • теореме об измерении углов, связанных с окружностью;

  • определении и свойствах касательных к окружности; теореме о равенстве двух касательных, проведённых из одной точки;

  • определении вписанной и описанной окружностей, их свойствах;

  • определении тригонометрические функции острого угла, основных соотношений между ними;

  • приёмах решения прямоугольных треугольников;

  • тригонометрических функциях углов от 0 до 180°;

  • теореме косинусов и теореме синусов;

  • приёмах решения произвольных треугольников;

  • формулах для площади треугольника, параллелограмма, трапеции;

  • теореме Пифагора.

  • Применять признаки и свойства параллелограмма, ромба, прямоугольника, квадрата при решении задач;

  • решать простейшие задачи на трапецию;

  • находить градусную меру углов, связанных с окружностью; устанавливать их равенство;

  • применять свойства касательных к окружности при решении задач;

  • решать задачи на вписанную и описанную окружность;

  • выполнять основные геометрические построения с помощью циркуля и линейки;

  • находить значения тригонометрических функций острого угла через стороны прямоугольного треугольника;

  • применять соотношения между тригонометрическими функциями при решении задач; в частности, по значению одной из функций находить значения всех остальных;

  • решать прямоугольные треугольники;

  • сводить работу с тригонометрическими функциями углов от 0 до 180° к случаю острых углов;

  • применять теорему косинусов и теорему синусов при решении задач;

  • решать произвольные треугольники;

  • находить площади треугольников, параллелограммов, трапеций;

  • применять теорему Пифагора при решении задач;

  • находить простейшие геометрические вероятности;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.



9-й класс.

Алгебра


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • свойствах числовых неравенств;

  • методах решения линейных неравенств;

  • свойствах квадратичной функции;

  • методах решения квадратных неравенств;

  • методе интервалов для решения рациональных неравенств;

  • методах решения систем неравенств;

  • свойствах и графике функцииhello_html_m1baf31d2.gif при натуральном n;

  • определении и свойствах корней степени n;

  • степенях с рациональными показателями и их свойствах;

  • определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;

  • определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;

  • формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.

  • Использовать свойства числовых неравенств для преобразования неравенств;

  • доказывать простейшие неравенства;

  • решать линейные неравенства;

  • строить график квадратичной функции и использовать его при решении задач;

  • решать квадратные неравенства;

  • решать рациональные неравенства методом интервалов;

  • решать системы неравенств;

  • строить график функцииhello_html_m1baf31d2.gif при натуральном n и использовать его при решении задач;

  • находить корни степени n;

  • использовать свойства корней степени n при тождественных преобразованиях;

  • находить значения степеней с рациональными показателями;

  • решать основные задачи на арифметическую и геометрическую прогрессии;

  • находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


9-й класс.

Геометрия

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • признаках подобия треугольников;

  • теореме о пропорциональных отрезках;

  • свойстве биссектрисы треугольника;

  • пропорциональных отрезках в прямоугольном треугольнике;

  • пропорциональных отрезках в круге;

  • теореме об отношении площадей подобных многоугольников;

  • свойствах правильных многоугольников; связи между стороной правильного многоугольника и радиусами вписанного и описанного кругов;

  • определении длины окружности и формуле для её вычисления;

  • формуле площади правильного многоугольника;

  • определении площади круга и формуле для её вычисления; формуле для вычисления площадей частей круга;

  • правиле нахождения суммы и разности векторов, произведения вектора на скаляр; свойства этих операций;

  • определении координат вектора и методах их нахождения;

  • правиле выполнений операций над векторами в координатной форме;

  • определении скалярного произведения векторов и формуле для его нахождения;

  • связи между координатами векторов и координатами точек;

  • векторным и координатным методах решения геометрических задач.

  • формулах объёма основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса.

  • Применять признаки подобия треугольников при решении задач;

  • решать простейшие задачи на пропорциональные отрезки;

  • решать простейшие задачи на правильные многоугольники;

  • находить длину окружности, площадь круга и его частей;

  • выполнять операции над векторами в геометрической и координатной форме;

  • находить скалярное произведение векторов и применять его для нахождения различных геометрических величин;

  • решать геометрические задачи векторным и координатным методом;

  • применять геометрические преобразования плоскости при решении геометрических задач;

  • находить объёмы основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.



  1. Содержание учебного предмета «Математика»


АРИФМЕТИКА 240ч.


Натуральные числа. Натуральный ряд. Десятичная сис­тема счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.

Степень с натуральным показателем.

Числовые выражения, значение числового выражения. По­рядок действий в числовых выражениях, использование ско­бок. Решение текстовых задач арифметическими способами.

Делители и кратные. Свойства и признаки делимости. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.

Дроби. Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дробей. Ариф­метические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновен­ной в виде десятичной.

Проценты; нахождение процентов от величины и величи­ны по ее процентам. Отношение; выражение отношения в процентах. Пропорция; основное свойство пропорции.

Решение текстовых задач арифметическими способами.

Рациональные числа. Положительные и отрицательные числа, модуль числа. Множество целых чисел.

Множество рациональных чисел; рациональное число как отношение hello_html_6809f247.gif, где


m — целое число, n — натуральное число. Сравнение рацио­нальных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий. Степень с це­лым показателем.

Действительные числа. Квадратный корень из числа. Ко­рень третьей степени.

Понятие об иррациональном числе. Иррациональность числа hello_html_1caef8ee.gif и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действи­тельных чисел в виде бесконечных десятичных дробей. Срав­нение действительных чисел.

Координатная прямая. Изображение чисел точками коор­динатной прямой. Числовые промежутки.

Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение мно­жителя — степени 10 — в записи числа.

Приближенное значение величины, точность приближе­ния. Округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.



АЛГЕБРА 200ч.


Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и ее свойства. Одно­члены и многочлены. Степень многочлена. Сложение, вычи­тание, умножение многочленов. Формулы сокращенного умно­жения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен; разло­жение квадратного трехчлена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраи­ческих дробей. Степень с целым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказа­тельство тождеств.

Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выра­жений и вычислениям.

Уравнения. Уравнение с одной переменной. Корень урав­нения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. Квадратное уравнение: формула кор­ней квадратного уравнения. Теорема Виета. Решение урав­нений, сводящихся к линейным и квадратным. Примеры ре­шения уравнений третьей и четвертой степени. Решение дробно-рациональных уравнений.

Уравнение с двумя переменными. Линейное уравнение с дву­мя переменными, примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя перемен­ными; решение подстановкой и сложением. Примеры реше­ния систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интер­претация уравнения с двумя переменными. График линейно­го уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простей­ших нелинейных уравнений: парабола, гипербола, окруж­ность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства. Числовые неравенства и их свойства.

Неравенство с одной переменной. Равносильность нера­венств. Линейные неравенства с одной переменной. Квадрат­ные неравенства. Системы неравенств с одной переменной.


ФУНКЦИИ 65ч.


Основные понятия. Зависимости между величинами. Представление зависимостей формулами. Понятие функции.

Область определения и множество значений функции. Спосо­бы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.

Числовые функции. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, ее график и свойства. Квадра­тичная функция, ее график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства.

Графики функций hello_html_m2e2cb7a0.gif, у =hello_html_662b5178.gif, у = |х|.

Числовые последовательности. Понятие числовой по­следовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n членов. Изображение членов арифметиче­ской и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

ВЕРОЯТНОСТЬ И СТАТИСТИКА 50ч.


Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Ста­тистические характеристики набора данных: среднее арифме­тическое, медиана, наибольшее и наименьшее значения, раз­мах. Представление о выборочном исследовании.

Случайные события и вероятность. Понятие о слу­чайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и не­возможные события. Равновозможность событий. Классиче­ское определение вероятности.

Комбинаторика. Решение комбинаторных задач перебо­ром вариантов. Комбинаторное правило умножения. Переста­новки и факториал.

ГЕОМЕТРИЯ 255ч.


Наглядная геометрия. Наглядные представления о фигу­рах на плоскости: прямая, отрезок, луч, угол, ломаная, мно­гоугольник, окружность, круг. Четырехугольник, прямоуголь­ник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение геометрических фигур. Взаим­ное расположение двух прямых, двух окружностей, прямой и окружности.

Длина отрезка, ломаной. Периметр многоугольника. Еди­ницы измерения длины. Измерение длины отрезка, построе­ние отрезка заданной длины.

Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь квадрата. Приближенное измерение площадей фигур на клетчатой бумаге. Равновели­кие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры се­чений. Многогранники. Правильные многогранники. Приме­ры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зе­ркальная симметрии. Изображение симметричных фигур.

Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикуляр­ные прямые. Теоремы о параллельности и перпендикулярно­сти прямых. Перпендикуляр и наклонная к прямой. Середин­ный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольни­ки; свойства и признаки равнобедренного треугольника. Приз­наки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сум­ма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треуголь­ников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных тре­угольников. Основное тригонометрическое тождество. Форму­лы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и те­орема синусов. Замечательные точки треугольника.

Четырехугольник. Параллелограмм, его свойства и призна­ки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Централь­ный угол, вписанный угол; величина вписанного угла. Взаим­ное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в тре­угольник, и окружность, описанная около треугольника. Впи­санные и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие о равенстве фи­гур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Решение задач на вычисление, доказательство и построе­ние с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллель­ными прямыми.

Периметр многоугольника.

Длина окружности, число л; длина дуги окружности.

Градусная мера угла, соответствие между величиной цен­трального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь много­угольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.

Решение задач на вычисление и доказательство с исполь­зованием изученных формул.

Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоско­сти. Уравнение окружности.

Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.


ЛОГИКА И МНОЖЕСТВА 10ч.


Теоретико-множественные понятия. Множество, эле­мент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.

Элементы логики. Определение. Аксиомы и теоремы. До­казательство. Доказательство от противного. Теорема, обрат­ная данной. Пример и контрпример.

Понятие о равносильности, следовании, употребление ло­гических связок если ..., то в том и только в том слу­чае, логические связки и, или.


МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ.


(Содержание раздела вводится по мере изучения других вопросов.)

История формирования понятия числа: натуральные чи­сла, дроби, недостаточность рациональных чисел для геомет­рических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. От­крытие десятичных дробей. Старинные системы мер. Десятич­ные дроби и метрическая система мер. Появление отрицатель­ных чисел и нуля. J1. Магницкий. JT. Эйлер.

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Де­карт. История вопроса о нахождении формул корней алгебраи­ческих уравнений, неразрешимость в радикалах уравнений степени, большей четырех. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Фер­ма. Примеры различных систем координат на плоскости.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.

Истоки теории вероятностей: страховое дело, азартные иг­ры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.

От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построение с помощью циркуля и линейки. Пост­роение правильных многоугольников. Трисекция угла. Квад­ратура круга. Удвоение куба. История числа я. Золотое сече­ние. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата.

Софизмы, парадоксы.

Резерв времени — 55 ч



  1. Тематический план

МАТЕМАТИКА 5—6 классы (350 ч)

Основное содержание по темам

Характеристика основных видов деятельности ученика (на уровне учебных действий)

1. Натуральные числа (50 ч)

Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.

Понятие о степени с натуральным показателем.

Квадрат и куб числа.

Числовые выражения, значение числового выра­жения. Порядок действий в числовых выражениях, использование скобок.

Решение текстовых задач арифметическими спо­собами.

Делители и кратные. Наибольший общий дели­тель; наименьшее общее кратное. Свойства делимо­сти. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком

Описывать свойства натурального ряда.

Читать и записывать натуральные числа, сравнивать и упорядочивать их.

Выполнять вычисления с натуральными числами; вы­числять значения степеней.

Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения.

Анализировать и осмысливать текст задачи, пере­формулировать условие, извлекать необходимую ин­формацию, моделировать условие с помощью схем, ри­сунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответ­ствие условию.

Формулировать определения делителя и кратного, простого числа и составного числа, свойства и признаки делимости.

Доказывать и опровергать с помощью контрприме­ров утверждения о делимости чисел. Классифицировать натуральные числа (четные и нечетные, по остаткам от де­ления на 3 и т. п.).

Исследовать простейшие числовые закономерности, проводить числовые эксперименты (в том числе с исполь­зованием калькулятора, компьютера)

2. Дроби (120 ч)

Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дро­бей. Арифметические действия с десятичными дро­бями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде деся­тичной.

Отношение. Пропорция; основное свойство про­порции.

Проценты; нахождение процентов от величины и величины по ее процентам; выражение отношения в процентах.

Решение текстовых задач арифметическими спо­собами

Моделировать в графической, предметной форме по­нятия и свойства, связанные с понятием обыкновенной дроби.

Формулировать, записывать с помощью букв основ­ное свойство обыкновенной дроби, правила действий с обыкновенными дробями.

Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их. Выполнять вычисления с обыкновен­ными дробями.

Читать и записывать десятичные дроби. Представ­лять обыкновенные дроби в виде десятичных и десятич­ные в виде обыкновенных; находить десятичные прибли­жения обыкновенных дробей.

Сравнивать и упорядочивать десятичные дроби. Вы­полнять вычисления с десятичными дробями.

Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях.

Выполнять прикидку и оценку в ходе вычислений.

Объяснять, что такое процент. Представлять процен­ты в виде дробей и дроби в виде процентов.

Осуществлять поиск информации (в СМИ), содержа­щей данные, выраженные в процентах, интерпретировать их. Приводить примеры использования отношений на практике.

Решать задачи на проценты и дроби (в том числе за­дачи из реальной практики), используя при необходимости калькулятор; использовать понятия отношения и пропор­ции при решении задач.

Анализировать и осмысливать текст задачи, пере­формулировать условие, извлекать необходимую ин­формацию, моделировать условие с помощью схем, ри­сунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответ­ствие условию.

Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые экспе­рименты (в том числе с использованием калькулятора, компьютера)

3. Рациональные числа (40 ч)

Положительные и отрицательные числа, модуль числа. Изображение чисел точками координатной прямой; геометрическая интерпретация модуля числа.

Множество целых чисел. Множество рациональ­ных чисел. Сравнение рациональных чисел. Арифме­тические действия с рациональными числами. Свой­ства арифметических действий

Приводить примеры использования в окружающем мире положительных и отрицательных чисел (температура, выигрыш - проигрыш, выше - ниже уровня моря и т. п.).

Изображать точками координатной прямой положи­тельные и отрицательные рациональные числа.

Характеризовать множество целых чисел, множество рациональных чисел.

Формулировать и записывать с помощью букв свойства действий с рациональными числами, применять для преобразования числовых выражений.

Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами

4. Измерения, приближения, оценки. Зависимости между величинами (20 ч)

Примеры зависимостей между величинами ско­рость, время, расстояние; производительность, время, работа; цена, количество, стоимость и др. Представ­ление зависимостей в виде формул. Вычисления по формулам.

Решение текстовых задач арифметическими спосо­бами

Выражать одни единицы измерения величины в дру­гих единицах (метры в километрах, минуты в часах и т. п.).

Округлять натуральные числа и десятичные дроби. Выполнять прикидку и оценку в ходе вычислений.

Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам.

Использовать знания о зависимостях между величи­нами (скорость, время, расстояние; работа, производи­тельность, время и т. п.) при решении текстовых задач

5. Элементы алгебры (25 ч)

Использование букв для обозначения чисел, для записи свойств арифметических действий.

Буквенные выражения (выражения с переменны­ми). Числовое значение буквенного выражения.

Уравнение, корень уравнения. Нахождение неиз­вестных компонентов арифметических действий.

Декартовы координаты на плоскости. Построение точки по ее координатам, определение координат точ­ки на плоскости

Читать и записывать буквенные выражения, состав­лять буквенные выражения по условиям задач.

Вычислять числовое значение буквенного выраже­ния при заданных значениях букв.

Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.

Строить на координатной плоскости точки и фигуры по заданным координатам; определять координаты точек

6. Описательная статистика. Вероятность. Комбинаторика (20 ч)

Представление данных в виде таблиц, диаграмм. Понятие о случайном опыте и событии. Достовер­ное и невозможное события. Сравнение шансов.

Решение комбинаторных задач перебором вари­антов

Извлекать информацию из таблиц и диаграмм, вы­полнять вычисления по табличным данным, сравнивать величины, находить наибольшие и наименьшие значения и др.

Выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ.

Приводить примеры случайных событий, достоверных и невозможных событий. Сравнивать шансы наступления событий; строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др.

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комби­нации, отвечающие заданным условиям

7. Наглядная геометрия (45 ч)

Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, правильный многоугольник, окружность, круг. Четы­рехугольник, прямоугольник, квадрат. Треугольник, виды треугольников.

Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, пря­мой и окружности.

Длина отрезка, ломаной. Периметр многоугольни­ка. Единицы измерения длины. Измерение длины от­резка, построение отрезка заданной длины.

Угол. Виды углов. Градусная мера угла. Измере­ние и построение углов с помощью транспортира.

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь квад­рата. Равновеликие фигуры.

Наглядные представления о пространственных фи­гурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространствен­ных фигур. Примеры сечений. Многогранники, пра­вильные многогранники. Примеры разверток много­гранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямо­угольного параллелепипеда и объем куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур

Распознавать на чертежах, рисунках и моделях гео­метрические фигуры, конфигурации фигур (плоские и пространственные). Приводить примеры аналогов гео­метрических фигур в окружающем мире.

Изображать геометрические фигуры и их конфигура­ции от руки и с использованием чертежных инструментов. Изображать геометрические фигуры на клетчатой бумаге.

Измерять с помощью инструментов и сравнивать дли­ны отрезков и величины углов. Строить отрезки заданной длины с помощью линейки и циркуля и углы заданной ве­личины с помощью транспортира. Выражать одни едини­цы измерения длин через другие.

Вычислять площади квадратов и прямоугольников, используя формулы площади квадрата и площади прямо­угольника.

Выражать одни единицы измерения площади через другие.

Изготавливать пространственные фигуры из развер­ток; распознавать развертки куба, параллелепипеда, пи­рамиды, цилиндра и конуса. Рассматривать простейшие сечения пространственных фигур, получаемые путем предметного или компьютерного моделирования, опре­делять их вид.

Вычислять объемы куба и прямоугольного паралле­лепипеда, используя формулы объема куба и объема прямоугольного параллелепипеда. Выражать одни еди­ницы измерения объема через другие.

Исследовать и описывать свойства геометрических фигур (плоских и пространственных), используя экспери­мент, наблюдение, измерение. Моделировать геометри­ческие объекты, используя бумагу, пластилин, проволо­ку и др. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объ­ектов.

Находить в окружающем мире плоские и простран­ственные симметричные фигуры.

Решать задачи на нахождение длин отрезков, пери­метров многоугольников, градусной меры углов, площа­дей квадратов и прямоугольников, объемов кубов и пря­моугольных параллелепипедов, куба. Выделять в условии задачи данные, необходимые для ее решения, строить логическую цепочку рассуждений, сопоставлять полу­ченный результат с условием задачи.

Изображать равные фигуры, симметричные фигуры

Резерв времени 30 ч


АЛГЕБРА 7—9 классы (315 ч)

Основное содержание по темам

Характеристика основных видов деятельности ученика (на уровне учебных действий)

1. Действительные числа (15 ч)

Расширение множества натуральных чисел до множества целых, множества целых чисел до множе­ства рациональных. Рациональное число как отношение m/n, где т - целое число, а n - натуральное чи­сло.

Степень с целым показателем.

Квадратный корень из числа. Корень третьей сте­пени.

Понятие об иррациональном числе. Иррацио­нальность числа hello_html_1caef8ee.gif и несоизмеримость стороны и диагонали квадрата. Десятичные приближения ирра­циональных чисел.

Множество действительных чисел; представление действительных чисел в виде бесконечных десятич­ных дробей. Сравнение действительных чисел.

Взаимно однозначное соответствие между действительными числами и точками координатной прямой Числовые промежутки: интервал, отрезок, луч

Описывать множество целых чисел, множество ра­циональных чисел, соотношение между этими множе­ствами.

Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами, вы­числять значения степеней с целым показателем.

Формулировать определение квадратного корня из числа. Использовать график функции у = х2 для нахож­дения квадратных корней. Вычислять точные и прибли­женные значения корней, используя при необходимости калькулятор; проводить оценку квадратных корней.

Формулировать определение корня третьей степени; находить значения кубических корней, при необходимо­сти используя калькулятор.

Приводить примеры иррациональных чисел; распо­знавать рациональные и иррациональные числа; изобра­жать числа точками координатной прямой.

Находить десятичные приближения рациональных и иррациональных чисел; сравнивать и упорядочивать действительные числа.

Описывать множество действительных чисел.

Использовать в письменной математической речи обозначения и графические изображения числовых мно­жеств, теоретико-множественную символику


2. Измерения, приближения, оценки (10 ч)

Приближенное значение величины, точность приближения. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множите­ля - степени 10 в записи числа.

Прикидка и оценка результатов вычислений

Находить, анализировать, сопоставлять числовые характеристики объектов окружающего мира.

Использовать запись чисел в стандартном виде для выражения размеров объектов, длительности процессов в окружающем мире.

Сравнивать числа и величины, записанные с исполь­зованием степени 10.

Использовать разные формы записи приближенных значений; делать выводы о точности приближения по записи приближенного значения.

Выполнять вычисления с реальными данными.

Выполнять прикидку и оценку результатов вычислений

3. Введение в алгебру (8 ч)

Буквенные выражения (выражения с переменны­ми). Числовое значение буквенного выражения. До­пустимые значения переменных. Подстановка выраже­ний вместо переменных.

Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквен­ных выражений. Тождество

Выполнять элементарные знаково-символические действия: применять буквы для обозначения чисел, для записи общих утверждений; составлять буквенные выра­жения по условиям, заданным словесно, рисунком или чертежом; преобразовывать алгебраические суммы и произведения (выполнять приведение подобных слагае­мых, раскрытие скобок, упрощение произведений).

Вычислять числовое значение буквенного выраже­ния; находить область допустимых значений перемен­ных в выражении

4. Многочлены (45 ч)

Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сло­жение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразова­ние целого выражения в многочлен. Разложение мно­гочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокра­щенного умножения.

Многочлены с одной переменной. Корень мно­гочлена. Квадратный трехчлен, разложение квадратно­го трехчлена на множители

Формулировать, записывать в символической фор­ме и обосновывать свойства степени с натуральным по­казателем; применять свойства степени для преобразо­вания выражений и вычислений.

Выполнять действия с многочленами.

Выводить формулы сокращенного умножения, при­менять их в преобразованиях выражений и вычислениях.

Выполнять разложение многочленов на множители.

Распознавать квадратный трехчлен, выяснять возмож­ность разложения на множители, представлять квадрат­ный трехчлен в виде произведения линейных множителей.

Применять различные формы самоконтроля при вы­полнении преобразований

5. Алгебраические дроби (22 ч)

Алгебраическая дробь. Основное свойство алгеб­раической дроби. Сокращение дробей. Сложение, вы­читание, умножение, деление алгебраических дробей. Степень с целым показателем и ее свойства. Рациональные выражения и их преобразования. Доказательство тождеств

Формулировать основное свойство алгебраической дроби и применять его для преобразования дробей.

Выполнять действия с алгебраическими дробями. Представлять целое выражение в виде многочлена, дробное - в виде отношения многочленов; доказывать тождества.

Формулировать определение степени с целым пока­зателем. Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем; применять свойства степени для преобразования выражений и вычислений

6. Квадратные корни (12 ч)

понятия квадратного корня, арифметического квадратного корня. Уравнение вида х2=а. Свойства арифметических квадратных корней: корень из произ­ведения частного, степени; тождества (hello_html_m5600141a.gif)2 = а, где а≥0, (hello_html_m5600141a.gif)2= \а\. Применение свойств арифметических квадратных корней для преобразования числовых вы­ражений и вычислений

Доказывать свойства арифметических квадратных корней; применять их для преобразования выражений.

Вычислять значения выражений, содержащих квад­ратные корни; выражать переменные из геометрических и физических формул.

Исследовать уравнение вида х2 = а: находить точ­ные и приближенные корни при а > 0

7. Уравнения с одной переменной (38 ч)

Уравнение с одной переменной. Корень уравнения.

Свойства числовых равенств. Равносильность урав­нений.

Линейное уравнение. Решение уравнений, сводя­щихся к линейным.

Квадратное уравнение. Неполные квадратные урав­нения. Формула корней квадратного уравнения. Теоре­ма Виета. Решение уравнений, сводящихся к квадрат­ным. Биквадратное уравнение-

Примеры решения уравнений третьей и четвертой степени разложением на множители.

Решение дробно-рациональных уравнений.

Решение текстовых задач алгебраическим способом

Распознавать линейные и квадратные уравнения, це­лые и дробные уравнения.

Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; решать дробно-рацио­нальные уравнения.

Исследовать квадратные уравнения по дискрими­нанту и коэффициентам.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение; интерпретировать ре­зультат

8. Системы уравнений (30 ч)

Уравнение с двумя переменными. Линейное урав­нение с двумя переменными. Примеры решения урав­нений в целых числах.

Система уравнений с двумя переменными. Равно­сильность систем уравнений. Система двух линейных уравнений с двумя переменными; решение подстанов­кой и сложением. Решение систем двух уравнений, одно из которых линейное, а другое второй степени. Примеры решения систем нелинейных уравнений.

Решение текстовых задач алгебраическим спо­собом.

Определять, является ли пара чисел решением дан­ного уравнения с двумя переменными; приводить при­меры решения уравнений с двумя переменными.

Решать задачи, алгебраической моделью которых яв­ляется уравнение с двумя переменными; находить целые решения путем перебора.

Решать системы двух уравнений с двумя переменны­ми, указанные в содержании.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; решать составленную систему уравнений; ин­терпретировать результат.

Строить графики уравнений с двумя переменными. Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков.

Решать и исследовать уравнения и системы уравне­ний на основе функционально-графических представле­ний уравнений

9. Неравенства (20 ч)

Числовые неравенства и их свойства.

Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной перемен­ной. Квадратные неравенства.

Системы линейных неравенств с одной перемен­ной

Формулировать свойства числовых неравенств, ил­люстрировать их на координатной прямой, доказывать

алгебраически; применять свойства неравенств при ре­шении задач.

Распознавать линейные и квадратные неравенства. Решать линейные неравенства, системы линейных нера­венств. Решать квадратные неравенства на основе гра­фических представлений

10. Зависимости между величинами (15 ч)

Зависимость между величинами.

Представление зависимостей между величинами в виде формул. Вычисления по формулам.

Прямая пропорциональная зависимость: задание формулой, коэффициент пропорциональности; свой­ства. Примеры прямо пропорциональных зависимостей.

Обратная пропорциональная зависимость: зада­ние формулой, коэффициент обратной пропорцио нальности; свойства. Примеры обратных пропорцио­нальных зависимостей.

Решение задач на прямую пропорциональную и обратную пропорциональную зависимости

Составлять формулы, выражающие зависимости между величинами, вычислять по формулам.

Распознавать прямую и обратную пропорциональ­ные зависимости. Решать текстовые задачи на прямую и обратную пропорциональные зависимости (в том числе с контекстом из смежных дисциплин, из реальной жизни)

11. Числовые функции (35 ч)

Понятие функции. Область определения и множе­ство значений функции Способы задания функции. График функции. Свойства функции, их отображение на графике: возрастание и убывание функции, нули функции, сохранение знака. Чтение и построение гра­фиков функций.

Примеры графиков зависимостей, отражающих реальные процессы.

функции, описывающие прямую и обратную про­порциональные зависимости, их графики.

Линейная функция, ее график и свойства.

Квадратичная функция, ее график и свойства.

Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций у = hello_html_45443a93.gif, у=hello_html_46485c0a.gif у = | х |

Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); со­ставлять таблицы значений функций.

Строить по точкам графики функций. Описывать свойства функции на основе ее графического представ­ления.

Моделировать реальные зависимости формулами и графиками. Читать графики реальных зависимостей.

Использовать функциональную символику для запи­си разнообразных фактов, связанных с рассматриваемы­ми функциями, обогащая опыт выполнения знаково-сим- волических действий. Строить речевые конструкции с использованием функциональной терминологии.

Использовать компьютерные программы для по­строения графиков функций, для исследования положе­ния на координатной плоскости графиков функций в за­висимости от значений коэффициентов, входящих в формулу.

Распознавать виды изучаемых функций. Показывать

схематически положение на координатной плоскости графиков функций вида у = кх, у = кх + Ь, у =hello_html_381d3c12.gif , у= ах2, у = ах2+ с, у = ах2 + Ьх + с в зависимости от значений коэффициентов, входящих в формулы.

Строить графики изучаемых функций; описывать их свойства

12. Числовые последовательности. Арифметическая и геометрическая прогрессии (15 ч)

Понятие числовой последовательности. Задание последовательности рекуррентной формулой и фор­мулой n-го члена.

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометриче­ской прогрессий, суммы первых n членов. Изображе­ние членов арифметической и геометрической про­грессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты

Применять индексные обозначения, строить рече­вые высказывания с использованием терминологии, свя­занной с понятием последовательности.

Вычислять члены последовательностей, заданных формулой n-го члена или рекуррентной формулой. Устанавливать закономерность в построении последова­тельности, если известны первые несколько ее членов. Изображать члены последовательности точками на ко­ординатной плоскости.

Распознавать арифметическую и геометрическую прогрессии при разных способах задания. Выводить на основе доказательных рассуждений формулы общего чле­на арифметической и геометрической прогрессий, суммы первых п членов арифметической и геометрической про­грессий; решать задачи с использованием этих формул.

Рассматривать примеры из реальной жизни, иллю­стрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствую­щие зависимости графически.

Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием кальку­лятора)

13. Описательная статистика (10 ч)

Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметиче­ское, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании

Извлекать информацию из таблиц и диаграмм, вы­полнять вычисления по табличным данным. Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины.

Представлять информацию в виде таблиц, столбча­тых и круговых диаграмм, в том числе с помощью компьютерных программ.

Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.), находить среднее арифмети­ческое, размах числовых наборов.

Приводить содержательные примеры использования средних для описания данных (уровень воды в водоеме, спортивные показатели, определение границ климати­ческих зон)

14. Случайные события и вероятность (15 ч)

Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности

Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретиро­вать их результаты. Вычислять частоту случайного собы­тия; оценивать вероятность с помощью частоты, получен­ной опытным путем.

Решать задачи на нахождение вероятностей событий.

Приводить примеры случайных событий, в частности достоверных и невозможных событий, маловероятных со­бытий. Приводить примеры равновероятных событий

15. Элементы комбинаторики (10 ч)

Решение комбинаторных задач перебором вари­антов. Комбинаторное правило умножения. Переста­новки и факториал

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций.

Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или ком­бинаций (диагонали многоугольника, рукопожатия, число кодов, шифров, паролей и т. п.).

Распознавать задачи на определение числа переста­новок и выполнять соответствующие вычисления.

Решать задачи на вычисление вероятности с приме­нением комбинаторики

16. Множества. Элементы логики (5 ч)

Множество, элемент множества. Задание мно­жеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых мно­жеств. Пустое множество и его обозначение. Подмно­жество. Объединение и пересечение множеств, раз­ность множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера - Венна.

Понятия о равносильности, следовании, употреб­ление логических связок если ..., то .... в том и толь­ко том случае. Логические связки и, или

Приводить примеры конечных и бесконечных мно­жеств. Находить объединение и пересечение множеств. Приводить примеры несложных классификаций.

Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса.

Иллюстрировать математические понятия и утверж­дения примерами. Использовать примеры и контрпри­меры в аргументации.

Конструировать математические предложения с по­мощью связок если ..., то ..., в том и только том слу­чае, логических связок и, или

Резерв времени — 10 ч


ГЕОМЕТРИЯ 7—9 классы (210 ч)

Основное содержание по темам

Характеристика основных видов деятельности ученика (на уровне учебных действий)

1. Прямые и углы (15 ч)

Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, развернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свойства углов с параллельны­ми и перпендикулярными сторонами. Взаимное рас­положение прямых на плоскости: параллельные и пересекающиеся прямые. Перпендикулярные пря­мые. Теоремы о параллельности и перпендикуляр­ности прямых. Перпендикуляр и наклонная к пря­мой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Метод геометри­ческих мест точек. Свойства биссектрисы угла и се­рединного перпендикуляра к отрезку

Формулировать определения и иллюстрировать по­нятия отрезка, луча; угла, прямого, острого, тупого и раз­вернутого углов; вертикальных и смежных углов; биссект­рисы угла.

Формулировать определения параллельных прямых; углов, образованных при пересечении двух параллельных прямых секущей; перпендикулярных прямых; перпендику­ляра и наклонной к прямой, серединного перпендикуляра к отрезку; распознавать и изображать их на чертежах и рисунках.

Объяснять, что такое геометрическое место точек, приводить примеры геометрических мест точек.

Формулировать аксиому параллельных прямых.

Формулировать и доказывать теоремы, выражаю­щие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности пер­пендикуляра к прямой, свойстве перпендикуляра и на­клонной, свойствах биссектрисы угла и серединного пер­пендикуляра к отрезку.

Решать задачи на построение, доказательство и вы­числения. Выделять в условии задачи условие и заклю­чение. Опираясь на условие задачи, проводить необхо­димые доказательные рассуждения. Сопоставлять полу­ченный результат с условием задачи


2. Треугольники (65 ч)

Треугольники. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссект­риса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.

Признаки равенства треугольников. Признаки ра­венства прямоугольных треугольников. Неравенство треугольника. Соотношения между сторонами и угла­ми треугольника. Сумма углов треугольника. Внешние углы треугольника, теорема о внешнем угле треуголь­ника. Теорема Фалеса. Подобие треугольников; коэф­фициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Синус, косинус, тангенс, ко­тангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Реше­ние прямоугольных треугольников. Основное тригоно­метрическое тождество. Формулы, связывающие си­нус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов.

Замечательные точки треугольника: точки пересе­чения серединных перпендикуляров, биссектрис, ме­диан, высот или их продолжений

Формулировать определения прямоугольного, ост­роугольного, тупоугольного, равнобедренного, равносто­роннего треугольников; высоты, медианы, биссектрисы, средней линии треугольника; распознавать и изобра­жать их на чертежах и рисунках.

Формулировать определение равных треугольников. Формулировать и доказывать теоремы о признаках ра­венства треугольников.

Объяснять и иллюстрировать неравенство тре­угольника.

Формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника, соотношени­ях между сторонами и углами треугольника, сумме углов треугольника, внешнем угле треугольника, о средней ли­нии треугольника.

Формулировать определение подобных треугольников.

Формулировать и доказывать теоремы о призна­ках подобия треугольников, теорему Фалеса.

Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольни­ка через его стороны. Формулировать и доказывать те­орему Пифагора.

Формулировать определения синуса, косинуса, тан­генса, котангенса углов от 0 до 180°. Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов. Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной три­гонометрической функции угла вычислять значения дру­гих тригонометрических функций этого угла. Формули­ровать и доказывать теоремы синусов и косинусов.

Формулировать и доказывать теоремы о точках пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений.

Исследовать свойства треугольника с помощью компьютерных программ.

Решать задачи на построение, доказательство и вы­числения. Выделять в условии задачи условие и заключе­ние. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в хо­де решения. Опираясь на данные условия задачи, прово­дить необходимые рассуждения. Интерпретировать полу­ченный результат и сопоставлять его с условием задачи

3. Четырехугольники (20 ч)

Четырехугольник. Параллелограмм, теоремы о свойствах сторон, углов и диагоналей параллелограм­ма и его признаки.

Прямоугольник, теорема о равенстве диагоналей прямоугольника.

Ромб, теорема о свойстве диагоналей.

Квадрат.

Трапеция, средняя линия трапеции; равнобедрен­ная трапеция

Формулировать определения параллелограмма, пря­моугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции; распознавать и изображать их на чертежах и рисунках.

Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадра­та, ромба, трапеции.

Исследовать свойства четырехугольников с по­мощью компьютерных программ.

Решать задачи на построение, доказательство и вы­числения. Моделировать условие задачи с помощью чер­тежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, не­обходимые для проведения обоснований логических шагов решения. Интерпретировать полученный резуль­тат и сопоставлять его с условием задачи

4. Многоугольники (10 ч)

Многоугольник. Выпуклые многоугольники. Пра­вильные многоугольники. Теорема о сумме углов вы­пуклого многоугольника. Теорема о сумме внешних углов выпуклого многоугольника

Распознавать многоугольники, формулировать оп­ределение и приводить примеры многоугольников.

Формулировать и доказывать теорему о сумме уг­лов выпуклого многоугольника.

Исследовать свойства многоугольников с помощью компьютерных программ.

Решать задачи на доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

5. Окружность и круг (20 ч)

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства.

Вписанные и описанные многоугольники. Окруж­ность, вписанная в треугольник, и окружность, опи­санная около треугольника. Теоремы о существовании окружности, вписанной в треугольник, и окружности, описанной около треугольника.

Вписанные и описанные окружности правильного многоугольника.

Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник; радиуса окружности, опи­санной около правильного многоугольника

Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окруж­ностью.

Формулировать и доказывать теоремы о вписан­ных углах, углах, связанных с окружностью.

Изображать, распознавать и описывать взаимное расположение прямой и окружности.

Изображать и формулировать определения впи­санных и описанных многоугольников и треугольников; окружности, вписанной в треугольник, и окружности, описанной около треугольника.

Формулировать и доказывать теоремы о вписанной и описанной окружностях треугольника и многоугольника.

Исследовать свойства конфигураций, связанных с ок­ружностью, с помощью компьютерных программ.

Решать задачи на построение, доказательство и вы­числения. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные по­строения в ходе решения. Выделять на чертеже конфи­гурации, необходимые для проведения обоснований ло­гических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

6. Геометрические преобразования (10 ч)

Понятие о равенстве фигур. Понятие движения: осевая и центральная симметрии, параллельный пере­нос, поворот. Понятие о подобии фигур и гомотетии

Объяснять и иллюстрировать понятия равенства фигур, подобия. Строить равные и симметричные фигу­ры. выполнять параллельный перенос и поворот.

Исследовать свойства движений с помощью компь­ютерных программ.

Выполнять проекты по темам геометрических преоб­разований на плоскости

7. Построения с помощью циркуля и линейки (5 ч)

Построения с помощью циркуля и линейки

Решать задачи на построение с помощью циркуля и линейки.

Находить условия существования решения, выпол­нять построение точек, необходимых для построения ис­комой фигуры. Доказывать, что построенная фигура удовлетворяет условиям задачи (определять число решений задачи при каждом возможном выборе данных)

8. Измерение геометрических величин (25 ч)

Длина отрезка. Длина ломаной. Периметр много­угольника.

Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Длина окружности, число л; длина дуги окруж­ности.

_ Градусная мера угла, соответствие между величи­ной центрального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольни­ка. Площади параллелограмма, треугольника и трапе­ции (основные формулы). Формулы, выражающие площадь треугольника через две стороны и угол меж­ду ними, через периметр и радиус вписанной окруж­ности; формула Герона. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение меж­ду площадями подобных фигур

Объяснять и иллюстрировать понятие периметра многоугольника.

Формулировать определения расстояния между точка­ми, от точки до прямой, между параллельными прямыми.

Формулировать и объяснять свойства длины, гра­дусной меры угла, площади.

Формулировать соответствие между величиной центрального угла и длиной дуги окружности.

Объяснять и иллюстрировать понятия равновеликих и равносоставленных фигур.

Выводить формулы площадей прямоугольника, па­раллелограмма, треугольника и трапеции, а также фор­мулу, выражающую площадь треугольника через две сто­роны и угол между ними, длину окружности, площадь круга.

Находить площадь многоугольника разбиением на треугольники и четырехугольники.

Объяснять и иллюстрировать отношение площадей подобных фигур.

Решать задачи на вычисление линейных величин, градусной меры угла и площадей треугольников, четы­рехугольников и многоугольников, длины окружности и площади круга. Опираясь на данные условия задачи, на­ходить возможности применения необходимых формул, преобразовывать формулы. Использовать формулы для обоснования доказательных рассуждений в ходе реше ния. Интерпретировать полученный результат и сопо­ставлять его с условием задачи

9. Координаты (10 ч)

Декартовы координаты на плоскости. Уравнение прямой. Координаты середины отрезка. Формула рас­стояния между двумя точками плоскости. Уравнение окружности

Объяснять и иллюстрировать понятие декартовой системы координат.

Выводить и использовать формулы координат се­редины отрезка, расстояния между двумя точками пло­скости, уравнения прямой и окружности.

Выполнять проекты по темам использования коор­динатного метода при решении задач на вычисления и доказательства

10. Векторы (10 ч)

Вектор. Длина (модуль) вектора. Равенство векто­ров. Коллинеарные векторы. Координаты вектора. Ум­ножение вектора на число, сумма векторов, разложе­ние вектора по двум неколлинеарным векторам. Угол между векторами. Скалярное произведение векторов

Формулировать определения и иллюстрировать по­нятия вектора, длины (модуля) вектора, коллинеарных векторов, равных векторов.

Вычислять длину и координаты вектора.

Находить угол между векторами.

Выполнять операции над векторами.

Выполнять проекты по темам использования вектор­ного метода при решении задач на вычисления и доказа­тельства

11. Элементы логики (5 ч)

Определение. Аксиомы и теоремы. Доказатель­ство. Доказательство от противного. Теорема, обрат­ная данной. Пример и контрпример

Воспроизводить формулировки определений; конструировать несложные определения самостоятель­но. Воспроизводить формулировки и доказательства изученных теорем, проводить несложные доказательства самостоятельно, ссылаться в ходе обоснований на опре­деления, теоремы, аксиомы

Резерв времени -15 ч



7. Описание учебно-методического и материально-технического обеспече­ния образователь­ного процесса

1.Нормативные документы: Примерная программа основного общего образо­вания по матема­тике.

2. -Учебники: по математике для 5—6 классов, по алгебре для 7-9 классов, по геометрии для 7—9 классов.

  • УМК Н.Я.Виленкин «Математика» 5,6:

  • УМК Ю.Н.Макарычев « Алгебра» 7-9

  • УМК Л.С.Атанасян «Геометрия 7-9»

- Учебные пособия: рабочие тетради, дидактические материалы, сборники контрольных работ.

- Пособия для подготовки и/или проведения государственной ат­тестации по математике за курс основной школы.

3. Научная, научно-популярная, историческая литература.

4.Справочные пособия (энциклопедии, словари, справочники по
математике и т.п.).

5.Печатные пособия: Портреты выдающихся деятелей математики.

6.Информационные средства

  • Мультимедийные обучающие программы и электронные учебные издания по основ­ным разделам курса математики.

  • Электронная база данных для создания тематических и итоговых разноуровневых тре­нировочных и проверочных материалов для органи­зации фронтальной и индивиду­альной работы.

7.Технические средства обучения

        • Мультимедийный компьютер.

  • Мультимедийный проектор.

  • Экран навесной.

  • Интерактивная доска.

8. Учебно-практическое и учебно-лабораторное оборудование

  • Комплект чертежных инструментов (классных и раздаточных): ли­нейка, транспор­тир, угольник (30°, 60°, 90°), цир­куль.

  • Комплекты планиметрических и стереометрических тел (демон­стра­ционных и раздаточ­ных).



  1. Планируемые результаты освоения обучающимися основной образовательной программы основного общего образования



5-й класс


Использовать при решении математических задач, их обосновании и проверке найденного решения знание:

  • названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);

  • как образуется каждая следующая счётная единица;

  • названия и последовательность разрядов в записи числа;

  • названия и последовательность первых трёх классов;

  • сколько разрядов содержится в каждом классе;

  • соотношение между разрядами;

  • сколько единиц каждого класса содержится в записи числа;

  • как устроена позиционная десятичная система счисления;

  • единицы измерения величин (длина, масса, время, площадь), соотношения между ними;

  • десятичных дробях и правилах действий с ними;

- сравнивать десятичные дроби;

  • выполнять операции над десятичными дробями;

  • преобразовывать десятичную дробь в обыкновенную и наоборот;

  • округлять целые числа и десятичные дроби;

  • находить приближённые значения величин с недостатком и избытком;

  • выполнять приближённые вычисления и оценку числового выражения;


  • функциональной связи между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа).

Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;

  • выполнять умножение и деление с 1000;

  • вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;

  • решать простые и составные текстовые задачи;

  • выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;

  • находить вероятности простейших случайных событий;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;

  • читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;

  • строить простейшие линейные, столбчатые и круговые диаграммы;

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

6-й класс

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • раскладывать натуральное число на простые множители;

  • находить наибольший общий делитель и наименьшее общее кратное нескольких чисел;

- отношениях и пропорциях; основном свойстве пропорции;

  • прямой и обратной пропорциональных зависимостях и их свойствах;

  • процентах;

  • целых и дробных отрицательных числах; рациональных числах;

  • правиле сравнения рациональных чисел;

  • правилах выполнения операций над рациональными числами; свойствах операций.

  • делить число в данном отношении;

  • находить неизвестный член пропорции;

  • находить данное количество процентов от числа и число по известному количеству процентов от него;

  • находить, сколько процентов одно число составляет от другого;

  • увеличивать и уменьшать число на данное количество процентов;

  • решать текстовые задачи на отношения, пропорции и проценты;

  • сравнивать два рациональных числа;

  • выполнять операции над рациональными числами, использовать свойства операций для упрощения вычислений;

  • решать комбинаторные задачи с помощью правила умножения;

  • находить вероятности простейших случайных событий;

  • решать простейшие задачи на осевую и центральную симметрию;

  • решать простейшие задачи на разрезание и составление геометрических фигур;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


7-й класс.

Математика(Алгебра)


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • натуральных, целых, рациональных, иррациональных, действительных числах;

  • степени с натуральными показателями и их свойствах;

  • одночленах и правилах действий с ними;

  • многочленах и правилах действий с ними;

  • формулах сокращённого умножения;

  • тождествах; методах доказательства тождеств;

  • линейных уравнениях с одной неизвестной и методах их решения;

  • системах двух линейных уравнений с двумя неизвестными и методах их решения.

  • Выполнять действия с одночленами и многочленами;

  • узнавать в выражениях формулы сокращённого умножения и применять их;

  • раскладывать многочлены на множители;

  • выполнять тождественные преобразования целых алгебраических выражений;

  • доказывать простейшие тождества;

  • находить число сочетаний и число размещений;

  • решать линейные уравнения с одной неизвестной;

  • решать системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;

  • решать текстовые задачи с помощью линейных уравнений и систем;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


7-й класс.

Математика(Геометрия)


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • основных геометрических понятиях: точка, прямая, плоскость, луч, отрезок, ломаная, многоугольник;

  • определении угла, биссектрисы угла, смежных и вертикальных углов;

  • свойствах смежных и вертикальных углов;

  • определении равенства геометрических фигур; признаках равенства треугольников;

  • геометрических местах точек; биссектрисе угла и серединном перпендикуляре к отрезку как геометрических местах точек;

  • определении параллельных прямых; признаках и свойствах параллельных прямых;

  • аксиоме параллельности и её краткой истории;

  • формуле суммы углов треугольника;

  • определении и свойствах средней линии треугольника;

  • теореме Фалеса.

  • Применять свойства смежных и вертикальных углов при решении задач;

  • находить в конкретных ситуациях равные треугольники и доказывать их равенство;

  • устанавливать параллельность прямых и применять свойства параллельных прямых;

  • применять теорему о сумме углов треугольника;

  • использовать теорему о средней линии треугольника и теорему Фалеса при решении задач;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;


8-й класс.

Математика(Алгебра)


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • алгебраической дроби; основном свойстве дроби;

  • правилах действий с алгебраическими дробями;

  • степенях с целыми показателями и их свойствах;

  • стандартном виде числа;

  • функциях hello_html_m32d1edc9.gif, hello_html_m5058ae9b.gif, hello_html_23768637.gif, их свойствах и графиках;

  • понятии квадратного корня и арифметического квадратного корня;

  • свойствах арифметических квадратных корней;

  • функции hello_html_58f5fa8d.gif, её свойствах и графике;

  • формуле для корней квадратного уравнения;

  • теореме Виета для приведённого и общего квадратного уравнения;

  • основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;

  • методе решения дробных рациональных уравнений;

  • основных методах решения систем рациональных уравнений.

  • Сокращать алгебраические дроби;

  • выполнять арифметические действия с алгебраическими дробями;

  • использовать свойства степеней с целыми показателями при решении задач;

  • записывать числа в стандартном виде;

  • выполнять тождественные преобразования рациональных выражений;

  • строить графики функций hello_html_m32d1edc9.gif, hello_html_m5058ae9b.gif, hello_html_23768637.gif и использовать их свойства при решении задач;

  • вычислять арифметические квадратные корни;

  • применять свойства арифметических квадратных корней при решении задач;

  • строить график функции hello_html_58f5fa8d.gif и использовать его свойства при решении задач;

  • решать квадратные уравнения;

  • применять теорему Виета при решении задач;

  • решать целые рациональные уравнения методом разложения на множители и методом замены неизвестной;

  • решать дробные уравнения;

  • решать системы рациональных уравнений;

  • решать текстовые задачи с помощью квадратных и рациональных уравнений и их систем;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;


8-й класс.

Математика(Геометрия)


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • определении параллелограмма, ромба, прямоугольника, квадрата; их свойствах и признаках;

  • определении трапеции; элементах трапеции; теореме о средней линии трапеции;

  • определении окружности, круга и их элементов;

  • теореме об измерении углов, связанных с окружностью;

  • определении и свойствах касательных к окружности; теореме о равенстве двух касательных, проведённых из одной точки;

  • определении вписанной и описанной окружностей, их свойствах;

  • определении тригонометрические функции острого угла, основных соотношений между ними;

  • приёмах решения прямоугольных треугольников;

  • тригонометрических функциях углов от 0 до 180°;

  • теореме косинусов и теореме синусов;

  • приёмах решения произвольных треугольников;

  • формулах для площади треугольника, параллелограмма, трапеции;

  • теореме Пифагора.

  • Применять признаки и свойства параллелограмма, ромба, прямоугольника, квадрата при решении задач;

  • решать простейшие задачи на трапецию;

  • находить градусную меру углов, связанных с окружностью; устанавливать их равенство;

  • применять свойства касательных к окружности при решении задач;

  • решать задачи на вписанную и описанную окружность;

  • выполнять основные геометрические построения с помощью циркуля и линейки;

  • находить значения тригонометрических функций острого угла через стороны прямоугольного треугольника;

  • применять соотношения между тригонометрическими функциями при решении задач; в частности, по значению одной из функций находить значения всех остальных;

  • решать прямоугольные треугольники;

  • сводить работу с тригонометрическими функциями углов от 0 до 180° к случаю острых углов;

  • применять теорему косинусов и теорему синусов при решении задач;

  • решать произвольные треугольники;

  • находить площади треугольников, параллелограммов, трапеций;

  • применять теорему Пифагора при решении задач;

  • находить простейшие геометрические вероятности;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;



9-й класс.

математика(Алгебра)


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • свойствах числовых неравенств;

  • методах решения линейных неравенств;

  • свойствах квадратичной функции;

  • методах решения квадратных неравенств;

  • методе интервалов для решения рациональных неравенств;

  • методах решения систем неравенств;

  • свойствах и графике функцииhello_html_m1baf31d2.gif при натуральном n;

  • определении и свойствах корней степени n;

  • степенях с рациональными показателями и их свойствах;

  • определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;

  • определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;

  • формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.

  • Использовать свойства числовых неравенств для преобразования неравенств;

  • доказывать простейшие неравенства;

  • решать линейные неравенства;

  • строить график квадратичной функции и использовать его при решении задач;

  • решать квадратные неравенства;

  • решать рациональные неравенства методом интервалов;

  • решать системы неравенств;

  • строить график функцииhello_html_m1baf31d2.gif при натуральном n и использовать его при решении задач;

  • находить корни степени n;

  • использовать свойства корней степени n при тождественных преобразованиях;

  • находить значения степеней с рациональными показателями;

  • решать основные задачи на арифметическую и геометрическую прогрессии;

  • находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;


9-й класс.

Математика(Геометрия)

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • признаках подобия треугольников;

  • теореме о пропорциональных отрезках;

  • свойстве биссектрисы треугольника;

  • пропорциональных отрезках в прямоугольном треугольнике;

  • пропорциональных отрезках в круге;

  • теореме об отношении площадей подобных многоугольников;

  • свойствах правильных многоугольников; связи между стороной правильного многоугольника и радиусами вписанного и описанного кругов;

  • определении длины окружности и формуле для её вычисления;

  • формуле площади правильного многоугольника;

  • определении площади круга и формуле для её вычисления; формуле для вычисления площадей частей круга;

  • правиле нахождения суммы и разности векторов, произведения вектора на скаляр; свойства этих операций;

  • определении координат вектора и методах их нахождения;

  • правиле выполнений операций над векторами в координатной форме;

  • определении скалярного произведения векторов и формуле для его нахождения;

  • связи между координатами векторов и координатами точек;

  • векторным и координатным методах решения геометрических задач.

  • формулах объёма основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса.

  • Применять признаки подобия треугольников при решении задач;

  • решать простейшие задачи на пропорциональные отрезки;

  • решать простейшие задачи на правильные многоугольники;

  • находить длину окружности, площадь круга и его частей;

  • выполнять операции над векторами в геометрической и координатной форме;

  • находить скалярное произведение векторов и применять его для нахождения различных геометрических величин;

  • решать геометрические задачи векторным и координатным методом;

  • применять геометрические преобразования плоскости при решении геометрических задач;

  • находить объёмы основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;



Оценка планируемых результатов

Система оценки достижения планируемых результатов освоения основной образователь­ной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучаю­щимися всех трёх групп результатов образования: личностных, метапредмет­ных и предметных.

Система оценки предусматривает уровневый подход к содержанию оценки и инструмента­рию для оценки достижения планируемых результатов, а также к представле­нию и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образователь­ных достижений на основе «метода сложения», при котором фиксируется дости­жение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индиви­дуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

Система оценки достижения планируемых результатов освоения основной образователь­ной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучаю­щимися всех трёх групп результатов образования: личностных, метапредмет­ных и предметных.

Система оценки предусматривает уровневый подход к содержанию оценки и инструмента­рию для оценки достижения планируемых результатов, а также к представле­нию и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образователь­ных достижений на основе «метода сложения», при котором фиксируется дости­жение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индиви­дуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

 Особенности оценки предметных результатов

Оценка предметных результатов представляет собой оценку достижения обучаю­щимся планируемых результатов по отдельным предметам.

Формирование этих результатов обеспечивается за счёт основных компонентов образова­тельного процесса — учебных предметов.

Основным объектом оценки предметных результатов в соответствии с требованиями Стандарта является способность к решению учебно-познавательных и учебно-практиче­ских задач, основанных на изучаемом учебном материале, с использованием способов дейст­вий, релевантных содержанию учебных предметов, в том числе метапредметных (познава­тельных, регулятивных, коммуникативных) действий.

Система оценки предметных результатов освоения учебных программ с учётом уровне­вого подхода, принятого в Стандарте, предполагает выделение базового уровня достижений как точки отсчёта при построении всей системы оценки и организации индиви­дуальной работы с обучающимися.

Реальные достижения обучающихся могут соответствовать базовому уровню, а могут от­личаться от него как в сторону превышения, так и в сторону недостижения.

Практика показывает, что для описания достижений обучающихся целесообразно устано­вить следующие пять уровней.

Базовый уровень достижений — уровень, который демонстрирует освоение учеб­ных действий с опорной системой знаний в рамках диапазона (круга) выделенных задач. Овладение базовым уровнем является достаточным для продолжения обучения на следую­щей ступени образования, но не по профильному направлению. Достижению базового уровня соответствует отметка «удовлетворительно» (или отметка «3», отметка «зачтено»).

Превышение базового уровня свидетельствует об усвоении опорной системы знаний на уровне осознанного произвольного овладения учебными действиями, а также о круго­зоре, широте (или избирательности) интересов. Целесообразно выделить следующие два уровня, превышающие базовый:

• повышенный уровень достижения планируемых результатов, оценка «хорошо» (от­метка «4»);

• высокий уровень достижения планируемых результатов, оценка «отлично» (от­метка «5»).

Повышенный и высокий уровни достижения отличаются по полноте освоения планируе­мых результатов, уровню овладения учебными действиями и сформированно­стью интересов к данной предметной области.

Индивидуальные траектории обучения обучающихся, демонстрирующих повышен­ный и высокий уровни достижений, целесообразно формировать с учётом интересов этих обучающихся и их планов на будущее. При наличии устойчивых интересов к учебному предмету и основательной подготовки по нему такие обучающиеся могут быть вовлечены в проектную деятельность по предмету и сориентированы на продолжение обучения в стар­ших классах по данному профилю.

Для описания подготовки учащихся, уровень достижений которых ниже базового, целесо­образно выделить также два уровня:

• пониженный уровень достижений, оценка «неудовлетворительно» (отметка «2»);

• низкий уровень достижений, оценка «плохо» (отметка «1»).

Недостижение базового уровня (пониженный и низкий уровни достижений) фиксиру­ется в зависимости от объёма и уровня освоенного и неосвоенного содержания предмета.

Как правило, пониженный уровень достижений свидетельствует об отсутствии система­тической базовой подготовки, о том, что обучающимся не освоено даже и поло­вины планируемых результатов, которые осваивает большинство обучающихся, о том, что имеются значительные пробелы в знаниях, дальнейшее обучение затруднено. При этом обучающийся может выполнять отдельные задания повышенного уровня. Данная группа обучающихся (в среднем в ходе обучения составляющая около 10%) требует специальной диагностики затруднений в обучении, пробелов в системе знаний и оказании целенаправлен­ной помощи в достижении базового уровня.

Низкий уровень освоения планируемых результатов свидетельствует о наличии только отдельных фрагментарных знаний по предмету, дальнейшее обучение практически невозможно. Обучающимся, которые демонстрируют низкий уровень достижений, требу­ется специальная помощь не только по учебному предмету, но и по формированию мотива­ции к обучению, развитию интереса к изучаемой предметной области, пониманию значимости предмета для жизни и др. Только наличие положительной мотивации может стать основой ликвидации пробелов в обучении для данной группы обучающихся.

Описанный выше подход целесообразно применять в ходе различных процедур оценива­ния: текущего, промежуточного и итогового.

Для формирования норм оценки в соответствии с выделенными уровнями необхо­димо описать достижения обучающегося базового уровня (в терминах знаний и умений, которые он должен продемонстрировать), за которые обучающийся обоснованно получает оценку «удовлетворительно». После этого определяются и содержательно описываются более высокие или низкие уровни достижений. Важно акцентировать внимание не на ошиб­ках, которые сделал обучающийся, а на учебных достижениях, которые обеспечи­вают продвижение вперёд в освоении содержания образования.

Для оценки динамики формирования предметных результатов в системе внутришколь­ного мониторинга образовательных достижений целесообразно фиксировать и анализировать данные о сформированности умений и навыков, способствующих освое­нию систематических знаний, в том числе:

• первичному ознакомлению, отработке и осознанию теоретических моделей и поня­тий (общенаучных и базовых для данной области знания), стандартных алгоритмов и процедур;

• выявлению и осознанию сущности и особенностей изучаемых объектов, процессов и яв­лений действительности (природных, социальных, культурных, технических и др.) в соответ­ствии с содержанием конкретного учебного предмета, созданию и использованию моделей изучаемых объектов и процессов, схем;

• выявлению и анализу существенных и устойчивых связей и отношений между объек­тами и процессами.

При этом обязательными составляющими системы накопленной оценки являются мате­риалы:

• стартовой диагностики;

• тематических и итоговых проверочных работ по всем учебным предметам;

•  творческих работ, включая учебные исследования и учебные проекты.

Решение о достижении или недостижении планируемых результатов или об освоении или неосвоении учебного материала принимается на основе результатов выполнения зада­ний базового уровня. В период введения Стандарта критерий достижения/освоения учеб­ного материала задаётся как выполнение не менее 50% заданий базового уровня или получе­ние 50% от максимального балла за выполнение заданий базового уровня.



Уровни подготовки учащихся и критерии успешности обучения по

математике

Уровни

Оценка

Теория

Практика

1

Узнавание

Алгоритмическая дея­тельность с под­сказкой

 

 

«3»

Распознавать объект, находить нужную фор­мулу, признак, свой­ство и т.д.

Уметь выполнять зада­ния по образцу, на непо­средственное примене­ние формул, правил, инст­рукций и т.д.

2

Воспроизведение

Алгоритмическая дея­тельность без под­сказки

 

 

«4»

Знать формулировки всех понятий, их свой­ства, признаки, фор­мулы.

Уметь воспроизвести доказательства, вы­воды, устанавливать взаимосвязь, выбирать нужное для выполне­ния данного задания

Уметь работать с учеб­ной и справочной литера­турой, выполнять задания, требующие не­сложных преобразова­ний с применением изу­чаемого материала

3

Понимание

Деятельность при от­сутствии явно выражен­ного алго­ритма

 

 

«5»

Делать логические за­ключения, составлять алгоритм, модель не­сложных ситуаций

Уметь применять полу­ченные знания в различ­ных ситуациях. Выпол­нять задания комбиниро­ванного харак­тера, содержащих несколько понятий.

4

Овладение умствен­ной самостоятельно­стью

Творческая исследова­тельская деятельность

 

 

 

«5»

В совершенстве знать изученный материал, свободно ориентиро­ваться в нем. Иметь знания из дополнитель­ных источников. Вла­деть операциями логиче­ского мышле­ния. Составлять мо­дель любой ситуации.

Уметь применять знания в любой нестандартной ситуации. Самостоя­тельно выполнять твор­ческие исследовательские задания. Выполнять функции консультанта.

 

Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

1. Оценка письменных контрольных работ обучающихся по математике.

Отметка «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.


Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

Грубыми считаются ошибки:

    • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

    • незнание наименований единиц измерения;

    • неумение выделить в ответе главное;

    • неумение применять знания, алгоритмы для решения задач;

    • неумение делать выводы и обобщения;

    • неумение читать и строить графики;

    • неумение пользоваться первоисточниками, учебником и справочниками;

    • потеря корня или сохранение постороннего корня;

    • отбрасывание без объяснений одного из них;

    • равнозначные им ошибки;

    • вычислительные ошибки, если они не являются опиской;

    • логические ошибки.

К негрубым ошибкам следует отнести:

    • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

    • неточность графика;

    • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

    • нерациональные методы работы со справочной и другой литературой;

    • неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

    • нерациональные приемы вычислений и преобразований;

    • небрежное выполнение записей, чертежей, схем, графиков.


Контроль ЗУН предлагается при проведении математических диктантов, практических ра­бот, самостоятельных работ обучающего и контролирующего вида, контрольных рабо




Краткое описание документа:

Структура программы

 

 Программа основного общего образования по математике содержит следую­щие разделы:
         - пояснительную записку, в которой определяются общие цели обучения матема­тике в основной школе;

- общую характеристику учебного предмета;

- описание места учебного предмета, курса в учебном плане;

          -  личностные, метапредметные и предметные результаты освоения учебного предмета «Математика»

- содержание курса, включающее перечень основного изучаемого материала, распределен­ного по содержательным разделам с указанием примерного числа часов на изуче­ние соответствующего материала;

- тематическое планирование  с описанием видов учебной деятельности уча­щихся 5–9 классов и указанием примерного числа часов на изучение соответст­вующего материала;
         - описание учебно-методического и материально - технического обеспечения образовательного процесса;

- планируемые  результаты.

 

1.     Пояснительная записка

          Математическое образование является обязательной и не­отъемлемой ча­стью общего образова­ния на всех ступенях школы.

          Рабочая программа предмета «Математика» для основного общего образования разработана на основе:

- нормативных документов:

  1. Об образовании в Российской Федерации : Федеральный закон от 29 декабря 2012 г. № 273-ФЗ.
  2. Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях»: постановление Главного государственного санитарного врача Российской Федерации от 29 декабря 2010 г. № 189, г. Москва ; зарегистрировано в Минюсте РФ 3 марта 2011 г.
  3. Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2013/14 учебный год : приказ Министерства образования и науки Российской Федерации от 19 декабря 2012 г. № 1067, г. Москва.
  4. Примерная основная образовательная программа образовательного учреждения : письмо департамента общего образования Министерства образования науки Российской Федерации от 01 ноября 2011 г. № 03-776.
  5. Федеральный государственный образовательный стандарт основного общего образования : приказ Минобрнауки России от 17 декабря 2010 г. № 1897.

- информационно-методических материалов:

  1. Примерной программы  по учебным предметам «Стандарты второго поколения. Математика 5 – 9 класс»  – М.: Просвещение,  2011 г., 
  2. «Математика. Сборник рабочих программ 5 – 6 классы», - М.Просвещение, 2014. Составитель Т. А. Бурмистрова.,
  3. «Алгебра. Программы общеобразовательных учреждений. 7 - 9 классы», - М.Просвещение, 2011. Составитель Т. А. Бурмистрова.,
  4. «Геометрия. Программы общеобразовательных учреждений. 7 - 9 классы», - М.Просвещение, 2011. Составитель Т. А. Бурмистрова.

- учебников: по математике для 5—6 классов, по алгебре для 7-9 классов, по геометрии для 7—9 классов.

10.   УМК Н.Я.Виленкин  «Математика» 5,6,

11.   УМК   Ю.Н.Макарычев « Алгебра» 7-9,

12.   УМК   Л.С.Атанасян «Геометрия 7-9».

 

 

Автор
Дата добавления 11.06.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров431
Номер материала 563716
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх