Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / РАБОЧАЯ ПРОГРАММА по учебному предмету «Алгебра и начала анализа» для 10 класса
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

РАБОЧАЯ ПРОГРАММА по учебному предмету «Алгебра и начала анализа» для 10 класса

библиотека
материалов

Петровская общеобразовательная школа I-III ступеней № 2

Красногвардейского районного совета

Республики Крым


СОГЛАСОВАНО УТВЕРЖДАЮ

Зам. директора по УВР Директор Петровской ОШ І-ІІІ ступеней

_________ _Хотина О. Н._ ________ _Кузьменко И. Н._

(подпись) (Ф.И.О.) (подпись) (Ф.И.О.)

Приказ от ___ ____ 20___ г. № ______


РАБОЧАЯ ПРОГРАММА

по учебному предмету «Алгебра и начала анализа»

для 10 класса

уровень: общеобразовательный

на период 2014/2015 учебный год




Рассмотрено и рекомендовано Составлено:

на заседании школьного методического Позыченюк В.А.

объединения учителей _____________ учитель математики

_______________________________ Петровской ОШ І-ІІІ ступеней № 2

Протокол от ___ ___20___ г. № ______




Петровка, 2014


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

 Рабочая программа по курсу «Алгебра и начала математического анализа» для 10 класса составлена на основе Федерального компонента государственного стандарта основного общего образования (Приказ Минобразования России от 05.03.2004 г.№1089), в соответствии с основными положениями Федерального базисного учебног плана.

Данная рабочая программа ориентирована на учащихся 10 класса и реализуется на основе следующих документов:

1. Стандарт основного общего образования по математике.

Стандарт основного общего образования по математике //Сборник нормативно-правовых документов и методических материалов, Москва: «Вентана-Граф», 2008.

2. Алгебра и начала математического анализа 10 – 11 классы. Программы общеобразовательных учреждений (составитель Т.А. Бурмистрова). М.: «Просвещение» 2009.

Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображе­ния, алгоритмической культуры, критичности мышления на уров­не, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонауч­ных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подго­товки;

  • воспитание средствами математики культуры личности, понима­ния значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией ма­тематических идей.


В курсе алгебры и начал математического анализа 10 класса могут быть условно выделены 3 основных раздела:

  1. Корни, степени, логарифмы

  2. Тригонометрические формулы. Тригонометрические функции.

  3. Элементы теории вероятностей

Раздел 1. Корни, степени, логарифмы

В данном разделе изучение линии числа начинается с повторения действительных чисел и завершается изучением степени с любым действительным показателем и логарифмов. Линия уравнений и неравенств начинается с повторения базовых способов решения рациональных уравнений и неравенств и завершается изучением показательных и логарифмических уравнений и неравенств. Здесь же должное внимание уделено и линии преобразования числовых и буквенных выражений, и линии функций. При изучении функции используется понятие функции непрерывной на промежутке, опирающееся на интуитивное представление о функции, график которой является непрерывной линией.

Цель изучения раздела:

        • Систематизировать известные и изучить новые сведения о действительных числах.

        • Сформировать умения решать рациональные уравнения и неравенства.

        • Освоить понятия корня степени п и арифметического корня степени п; выработать умение преобразовывать выражения, содержащие корни степени п.

        • Усвоить понятия рациональной и иррациональной степеней положительного числа и показательной функции.

        • Освоить понятие логарифма и логарифмической функции, выработать умение преобразовывать выражения, содержащие логарифмы.

        • Сформировать умение решать показательные и логарифмические уравнения и неравенства.



Раздел 2. Тригонометрические формулы. Тригонометрические функции.

В данном разделе приведено изложение всего тригонометрического материала от введения понятия угла, тригонометрических функций угла, формул тригонометрии до тригонометрических уравнений и неравенств. Вводится понятие арксинуса, арккосинуса, арктангенса и арккотангенса и рассматриваются их свойства. Особенностью изложения материала является то, что сначала изучаются тригонометрические функции угла с опорной иллюстрацией факта. Следует подчеркнуть, что аргументом у этих функций является угол. Все их свойства доказываются для углов, решаются задачи на нахождение всех углов, удовлетворяющих некоторым равенствам или неравенствам. Термин «формулы приведения» не используется по нескольким причинам. Во - первых, эти формулы появляются постепенно по мере их доказательства, а во-вторых, правила для запоминания формул являются лишь методическим приемом, который будет применяться учителем тогда, когда он посчитает это целесообразным. Функциональная линия продолжается изучением тригонометрических функций, их свойств и графиков, линия уравнений и неравенств – решением тригонометрических уравнений и неравенств. Отметим, что в базовой программе не предусмотрено изучение арксинуса, арккосинуса и т.д., но совершенно очевидно, что не сформировав у обучающихся представления об этом, нельзя считать, что мы сможем научить их решать простейшие тригонометрические уравнения, которые на базовом уровне изучаться должны.

Цели изучения раздела:

  • Освоить понятия синуса и косинуса произвольного угла, изучить свойства функций угла: sin hello_html_6b644a48.jpgи cos hello_html_6b644a48.jpg.

  • Освоить понятия тангенса и котангенса произвольного угла, изучить свойства функций угла: tg hello_html_6b644a48.jpgи ctg hello_html_6b644a48.jpg.


  • Освоить формулы синуса и косинуса суммы и разности двух углов, выработать умения выполнять тождественные преобразования тригонометрических выражений с использованием выведенных формул.

  • Изучить свойства основных тригонометрических функций и их графиков.

  • Сформировать умения решать несложные тригонометрические уравнения и неравенства.


Раздел 3. Элементы теории вероятностей

Ранее материал этого раздела изучался лишь в физико-математических классах, теперь он стал обязательным и при обучении на базовом уровне, но в небольшом объёме. Следует обратить особое внимание на усвоение обучающимися таких понятий как: «достоверное событие», «невозможное событие», «несовместные события», «вероятность события». Особое внимание следует уделить изучению свойств вероятности и применению комбинаторных формул для нахождения вероятности события.

Цели изучения раздела:

  • Овладеть классическим понятием вероятности события, изучить его свойства и научиться применять их при решении задач.


Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 272 ч. из расчета 4 ч. в неделю с X по XI класс.

.

Алгебра и начала анализа изучаются в объеме 2,5 ч. в неделю, всего – 85 часов.







Содержание обучения


Содержание материала

Количество часов

Планируемые результаты

  1. Действительные числа

5

Знает

Умеет

Понятие натурального числа. Множества чисел. Свойст­ва действительных чисел. Перестановки. Размещения. Сочетания.


Знает идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики; формулы для нахождения числа перестановок, размещений, сочетаний.


Применяет их к решению конкретных задач

  1. Рациональные уравнение и неравенства

14

Знает

Умеет

Рациональные выражения. Формулы бинома Ньютона, суммы и разности степеней. Рациональные уравнения. Системы рациональных уравнений. Метод интервалов решения неравенств. Рацио­нальные неравенства. Нестрогие неравенства. Системы ра­циональных неравенств


Решает уравнения третьей и четвёртой степени с помощью разложения на множители и введения вспомогательных переменных, дробные рациональные уравнения, сводя их к целым уравнениям с последующей проверкой корней.

Использует метод интервалов для решения несложных рациональных неравенств и неравенств, левая часть которых допускает разложение на множители. Решает простейшие уравнения и неравенства с модулем

  1. Корень степени n

8



Понятия функции и ее графика. Функция у = хп. Поня­тие корня степени п. Корни четной и нечетной степеней. Арифметический корень. Свойства корней степени п.



Различает и объясняет понятия «корень степени n» и «арифметический корень степени n»; моделирует реальные процессы с помощью степенных функций

Применяет свойства корней для преобразования выражений с радикалами; распознает и изображает графики степенных функций.

  1. Степень положительного числа

9

Знает

Умеет

Понятие и свойства степени с рациональным показате­лем. Предел последовательности. Бес­конечно убывающая геометрическая прогрессия. Число е. Понятие степени с иррациональным показателем. Показа­тельная функция.



Формулирует и доказывает свойства степени с рациональным показателем; преобразовывает несложные выражения, содержащие степень с рациональным показателем; разъясняет понятие «предела последовательности».

Применяет формулу бесконечно убывающей геометрической прогрессии к решению задач; распознает и строит графики показательных функций и на них иллюстрирует их свойства; применяет показательную функцию для описания простейших реальных процессов

  1. Логарифмы

6

Знает

Умеет

Понятие и свойства логарифмов. Логарифмическая функция. Десятичный логарифм (приближенные вычисле­ния).



Формулирует и разъясняет понятие логарифма; формулирует и доказывает свойства логарифмов, основное логарифмическое тождество.

Преобразовывает несложные выражения, содержащие логарифмы; распознает и строит графики логарифмических функций и на них иллюстрирует их свойства

  1. Показательные и логарифмические уравнения и неравенства

7

Знает

Умеет

Простейшие показательные и логарифмические уравне­ния. Уравнения, сводящиеся к простейшим заменой неиз­вестного. Простейшие показательные и логарифмические неравенства. Неравенства, сводящиеся к простейшим заме­ной неизвестного.



Определение логарифма; свойства степеней и логарифмов

Решает показательные и логарифмические уравнения и неравенства, сводящиеся к простейшим заменой неизвестного

7. Синус и косинус угла

7

Знает

Умеет

Понятие угла и его меры. Определение синуса и косину­са угла, основные формулы для них. Арксинус и аркко­синус. Примеры использования арксинуса и арккосинуса и формулы для них.



Переход от радианной меры угла к градусной и наоборот; формулирует определения синуса и косинуса угла и разъясняет их; формулирует и доказывает основные формулы для синуса и косинуса.

Применяет их для преобразования выражений; находит значение выражения, содержащего тригонометрические функции; формулирует и разъясняет понятия «арксинус» и «арккосинус»

8. Тангенс и котангенс угла

4

Знает

Умеет

Определения тангенса и котангенса угла и основные формулы для них. Арктангенс и арккотангенс. Примеры использования арктангенса и арккотангенса и формулы для них.



Формулирует определения тангенса и котангенса угла и разъясняет их; формулирует и доказывает основные формулы для тангенса и котангенса.

Формулирует и разъясняет понятия «арктангенс» и «арккотангенс»

Применяет их для преобразования выражений; находит значение выражения, содержащего тригонометрические функции.

9. Формулы сложения

10



Косинус суммы и разности двух углов. Формулы для дополнительных углов. Синус суммы и разности двух углов. Сумма и разность синусов и косинусов. Формулы для двойных и половинных углов. Произведение синусов и косинусов. Формулы для тангенсов.



Формулирует и доказывает основные тригонометрические формулы.

Применяет их для преобразования несложных тригонометрических выражений; вычисляет значения тригонометрических выражений.

10. Тригонометрические функции числового аргумента

8

Знает

Умеет

Функции у = sinx, у = cosx, у = tgx, у = ctgx.



Распознаёт графики тригонометрических функций, иллюстрирует свойства тригонометрических функций с помощью графика.

Применяет тригонометрические функции для описания реальных процессов.Строит графики тригонометрических функций.

11. Тригонометрические уравнения и неравенства

8

Знает

Умеет

Простейшие тригонометрические уравнения. Тригоно­метрические уравнения, сводящиеся к простейшим заменой неизвестного. Применение основных тригонометрических формул для решения уравнений. Однородные уравнения. Простейшие тригонометрические неравенства.



Обосновывает решения простейших тригонометрических уравнений (неравенств); решает несложные тригонометрические уравнения; решает тригонометрические уравнения, сводящиеся к простейшим заменой неизвестного.

Решает однородные тригонометрические уравнения первой и второй степени; применяет основные тригонометрические формулы для решения уравнений.

12. Вероятность события

4

Знает Умеет

Понятие и свойства вероятности события.



Разъясняет понятия «вероятность события», «равновозможные события», « невозможное событие», «достоверное событие» и т.д.; находит вероятность события с помощью определения; формулирует свойства вероятности и применяет их к решения задач.

Решает несложные задачи с применением комбинаторных формул.

13. Повторение

7



.


Календарно-тематическое планирование учебного материала

Алгебра 10 класс (2,5 часа в неделю. Всего 85 часов)

урока

пункта

Тема урока

Кол-во

часов

Дата

проведения

по плану

Дата проведения

фактически

Повторение

1-2


Повторение курса алгебры 7-9 класса

2




1


Преобразования рациональных выражений и выражений с радикалами.Уравнения.Неравенства.

1




2


Диагностическая контрольная работа

1




3-6


Действительные числа

4




3

1.1

Понятие действительного числа

1




4

1.2

Множества чисел. Свойства действительных чисел

1




5

1.4, 1.4

Перестановки , размещения и сочетания.

1




6


Cамостоятельная работа

1




7-20


Рациональные уравнения и неравенства

14




7

2.1

Рациональные выражения

1




8

2.2

Формулы бинома Ньютона, суммы и разности степеней

1




9

2.6

Рациональные уравнения

1




10

2.6

Решение более сложных уравнений

1




11

2.7

Системы рациональных уравнений

1




12

2.7

Самостоятельная работа

1




13,14

2.8

Метод интервалов решения неравенств

2




15,16

2.9

Рациональные неравенства

2




17

2.10

Нестрогие неравенства

1




18


Самостоятельная работа

1





19

2.11

Системы рациональных неравенств

1




20


Контрольная работа №1 «Рациональные уравнения и неравенства.»

1




21-26


Корень степени n

6




21

3.1

Понятие функции и её графика

1




22

3.2

Функция hello_html_1774501.gif

1




23

3.3, 3.4

Понятие корня степени n. Корни чётной и нечётной степеней

1




24

3.5, 3.6

Арифметический корень и его свойства

1




25


Преобразование выражений с радикалами

1




26


Контрольная работа №2 «Корень степени n»

1




27-33


Степень положительного числа

7




27

4.1, 4.2

Степень с рациональным показателем и её свойства

1




28


Преобразование выражений

1




29

4.3

Понятие предела последовательности

1




30

4.5

Бесконечно убывающая геометрическая прогрессия

1




31

4.7

Понятие степени с иррациональным показателем,число е.

1




32

4.8

Показательная функция, её график и свойства

1




33


Контрольная работа №3 «Степень положительного числа»

1




34-


Логарифмы

6




34

5.1

Понятие логарифма. Основное логарифмическое тождество

1




35,36

5.2

Свойства логарифмов

2






урока

пункта

Тема урока

Кол-во

часов

Дата

проведения

по плану

Дата проведения

фактически

Повторение

37,38


Преобразование логарифмических выражений. Самостоятельная работа

2




39

5.3

Логарифмическая функция, её график и свойства

1




40-46


Показательные и логарифмические уравнения и неравенства

7




40

6.1

Простейшие показательные уравнения

1




41

6.2

Простейшие логарифмические уравнения

1




42

6.3

Уравнения, сводящиеся к простейшим заменой неизвестного

1




43

6.4

Простейшие показательные неравенства

1




44

6.5

Простейшие логарифмические неравенства

1




45

6.6

Неравенства, сводящиеся к простейшим заменой неизвестного

1




46


Контрольная работа №4 «Показательные и логарифмические уравнения и неравенства»

1




47-52


Синус и косинус угла

6




47

7.1, 7.2

Понятие угла. Радианная мера угла

1




48

7.3

Определение синуса и косинуса угла

1




49,50

7.4

Основные формулы для hello_html_34c41f9d.gif и hello_html_m14f79827.gif

2




51

7.5, 7.6

Арксинус, арккосинус, арктангенс и арккотангенс

1




52


Решение задач по теме повышенной сложности

1




53-56


Тангенс и котангенс

4




53

8.1

Определение тангенса и котангенса

1




54

8.2

Основные формулы для тангенса и котангенса

1




55

8.3, 8.4

Арктангенс и арккотангенс

1




56


Контрольная работа №5 «Основные соотношения между тригонометрическими функциями одного аргумента»

1




урока

пункта

Тема урока

Кол-во

часов

Дата

проведения

по плану

Дата проведения

фактически

Повторение

57-


Формулы сложения

9




57

9.1

Косинус суммы и косинус разности двух углов

1




58

9.2

Формулы для дополнительных углов

1




59


Преобразование тригонометрических выражений

1




60

9.3

Синус суммы и синус разности двух углов

1




61

9.4

Сумма и разность синусов и косинусов

1




62


Преобразование тригонометрических выражений

1




63

9.5

Формулы для двойных и половинных углов

1




64,65

9.6, 9.7

Произведение синусов и косинусов, формулы для тангенсов,самостоятельная работа.

2




66-72


Тригонометрические функции числового аргумента

7




66

10.1

Функция hello_html_m7c74bfd2.gif, её график и свойства

1




67

10.2

Функция hello_html_64c6306.gif, её график и свойства

1




68


Построение более сложных графиков

1




69

10.3

Функция hello_html_4754ea2c.gif, её график и свойства

1




70

10.4

Функция hello_html_157902a1.gif, её график и свойства

1




71


Самостоятельная работа

1




72


Контрольная работа №6 «Тригонометрические функции, их графики и свойства»

1




73-


Тригонометрические уравнения и неравенства

8




73,74

11.1

Простейшие тригонометрические уравнения

2




75,76

11.2

Уравнения, сводящиеся к простейшим заменой неизвестного

2




77

11.3

Применение основных тригонометрических формул для решения уравнений

1




78

11.4

Однородные уравнения

1




79

11.5,11.6

Простейшие тригонометрические неравенства (обзор)

1




80


Контрольная работа №7 « Решение тригонометрических уравнений и неравенств»

1




81-


Вероятность события

4




81

12.1

Понятие вероятности события.

1




82,83

12.2

Свойства вероятностей.

2




84


Применение комбинаторных формул для вычисления вероятности.

1




85


Контрольная работа №8 (итоговая)

1







Литература


В учебный комплекс для 10 класса входят:


  1. «Программа общеобразовательных учреждений. Алгебра и начала анализа. 10-11 классы, - М.Просвещение, 2009. Составитель Т. А. Бурмистрова»

2. Алгебра и начала анализа: учебник для 10 класса общеобразовательных учреждений. Составители:. М. Никольский, М. К. Потапов, Н. Н. Ре­шетников, А. В. Шевкин. — М.: Просвещение, 2008.

3. «Алгебра и начала анализа. Дидактические материалы для 10 класса базовый и профильный уровни 3 –е издание, - М. Просвещение, 2008. Авторы: М. К. Потапов и А. В. Шевкин»

4. «Алгебра и начала математического анализа. Тематические тесты для 10 класса базовый и профильный уровни, - М. Просвещение, 2009. Автор Ю. В. Шепелева»

5. «Алгебра и начала математического анализа 10 класс. Книга для учителя. Базовый и профильный уровни, - М. Просвещение, 2008. Авторы: М. К. Потапов и А. В. Шевкин».







Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся по математике.

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.





Краткое описание документа:

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

 Рабочая  программа по курсу  «Алгебра и начала математического анализа» для 10 класса  составлена на основе Федерального компонента государственного стандарта основного общего образования (Приказ Минобразования России от 05.03.2004 г.№1089), в соответствии с основными положениями Федерального базисного учебног плана.

Данная рабочая программа ориентирована на учащихся 10 класса и реализуется на основе следующих документов:

1. Стандарт основного общего образования по математике.

Стандарт основного общего образования по математике //Сборник нормативно-правовых документов и методических материалов, Москва: «Вентана-Граф», 2008.

      2. Алгебра и начала математического анализа 10 – 11 классы. Программы общеобразовательных учреждений (составитель Т.А. Бурмистрова). М.: «Просвещение» 2009.

Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:

    формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

    развитие логического мышления, пространственного воображе­ния, алгоритмической культуры, критичности мышления на уров­не, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;

    овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонауч­ных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подго­товки;

    воспитание средствами математики культуры личности, понима­ния значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией ма­тематических идей.

 

В курсе алгебры и начал математического анализа 10  класса  могут быть условно выделены 3 основных раздела:

1.     Корни, степени, логарифмы

2.     Тригонометрические формулы. Тригонометрические функции.

Элементы  теории вероятностей

Автор
Дата добавления 15.01.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров244
Номер материала 302087
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх