Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Начальные классы / Другие методич. материалы / Рабочая программа учебного предмета "Математика" ОС "Школа 2100 (1-4 классы)

Рабочая программа учебного предмета "Математика" ОС "Школа 2100 (1-4 классы)

  • Начальные классы

Поделитесь материалом с коллегами:

Муниципальное общеобразовательное учреждение

«Гимназия № 6» г. Воркуты





РАССМОТРЕНА

гимназическим методическим объединением

учителей начальных классов

Протокол № ___

от «___» __________ 2013

УТВЕРЖДАЮ

Директор МОУ «Гимназия № 6» г.Воркуты

______________ Н.В. Хмарук

«___» _____________ 2013













Рабочая программа учебного предмета

«Математика»



начального общего образования

срок реализации программы: 4 года





Программа составлена на основе авторской программы начального общего образования

Образовательной системы «Школа 2100»

(Авторы: Т.Е.Демидова, С.А.Козлова, А.П. Тонких)






Составитель:

Золотова Светлана Анатольевна,

учитель начальных классов;

Бегханова Фания Шамиловна,

учитель начальных классов.





Воркута

2013

Пояснительная записка


Рабочая программа учебного предмета «Математика» составлена в соответствии с требованиями Федерального государственного образовательного стандарта начального общего образования на основе авторской программы образовательной системы «Школа 2100», М., БАЛАСС, 2011, Т.Е.Демидова, С.А.Козлова, А.П. Тонких.

Программа предусмотрена для работы с учащимися начального общего образования и реализуется по УМК (1 – 4 классы):

Т. Е. Демидова, С. А, Козлова, А. П. Тонких «Математика» 1 – 4 класс - М.: Баласс. 2010.

Т. Е. Демидова, С. А, Козлова, А. П. Тонких Рабочая тетрадь к учебнику «Математика» 1 класс - М.: Баласс. 2010.

С. А, Козлова, А.Г.Рубин контрольные работы к учебнику «Математика» 2 – 4 класс - М.: Баласс. 2010.

С. А, Козлова, А.Г.Рубин тесты и контрольные работы к учебнику «Математика» 2 – 4 класс - М.: Баласс. 2010.

Содержательная часть программы соответствует стандартам образования для начальной школы. Программа для начальных классов ориентирована на базовый уровень освоения предмета.

Срок реализации программы 4 года.

Предлагаемая программа ставит своей целью формирование всесторонне образованной и инициативной личности, владеющей системой математических знаний и умений, идейно – нравственных, культурных и этических принципов, норм поведения, которые складываются в ходе учебно – воспитательного процесса и готовят ученика к активной деятельности и непрерывному образованию в современном обществе.

Предметные знания и умения, приобретённые при изучении математики в начальной школе, первоначальное овладение математическим языком являются опорой для изучения смежных дисциплин, фундаментом обучения в старших классах общеобразовательных учреждений.

Предмет «Математика» является основой развития у учащихся познавательных действий, в первую очередь логических, включая и знаково-символические, а также таких, как планирование (цепочки действий по задачам), систематизация и структурирование знаний, преобразование информации, моделирование, дифференциация существенных и несущественных условий, аксиоматика, формирование элементов системного мышления, выработка вычислительных навыков. Особое значение имеет математика для формирования общего приема решения задач как универсального учебного действия. Таким образом, математика является эффективным средством развития личности школьника.

Данный курс создан на основе личностно ориентированных, деятельностно ориентированных и культурно ориентированных принципов, сформулированных в образовательной программе «Школа 2100».

Основной целью программы является формирование функционально грамотной личности, готовой к активной деятельности и непрерывному образованию в современном обществе, владеющей системой математических знаний и умений, позволяющих применять эти знания для решения практических жизненных задач, руководствуясь при этом идейно – нравственными, культурными и этическими принципами, нормами поведения, которые формируются в ходе учебно – воспитательного процесса.

Исходя из общих положений концепции математического образования, начальный курс математики призван решать следующие задачи:

  • создать условия для формирования логического и абстрактного мышления у младших школьников на входе в основную школу как основы их дальнейшего эффективного обучения;

  • сформировать набор необходимых для дальнейшего обучения предметных и общеучебных умений на основе решения как предметных, так и интегрированных жизненных задач;

  • обеспечить прочное и сознательное овладение системой математических знаний и умений, необходимых для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования; обеспечить интеллектуальное развитие, сформировать качества мышления, характерные для математической деятельности и необходимые для полноценной жизни в обществе;

  • сформировать представление об идеях и методах математики, о математике как форме описания и методе познания окружающего мира;

  • сформировать представление о математике как части общечеловеческой культуры, понимание значимости математики для общественного прогресса;

  • сформировать устойчивый интерес к математике на основе дифференцированного подхода к учащимся;

  • выявить и развить математические и творческие способности на основе заданий, носящих нестандартный, занимательный характер.

Важнейшей отличительной особенностью данного курса с точки зрения содержания является включение наряду с общепринятыми для начальной школы линиями «Числа и действиями над ними», «Текстовые задачи», «Величины», «Элементы геометрии», «Элементы алгебры», ещё и таких содержательных линий, как «Стохастика» и «Занимательные и нестандартные задачи». Кроме того, следует отметить, что предлагаемый курс математики содержит материалы для системной проектной деятельности и работы с жизненными (компетентностными) задачами.

Ценностные ориентиры содержания учебного предмета

Ценностные ориентиры изучения предмета «Математика» в целом ограничиваются ценностью истины, однако данный курс предлагает как расширение содержания предмета (компетентнстные задачи, где математическое содержание интегрировано с историческим и филологическим содержанием параллельных предметных курсов Образовательной системы «Школа 2100»), так и совокупность методик и технологий (в том числе и проектной), позволяющих заниматься всесторонним формированием личности учащихся средствами предмета «Математика» и, как следствие, расширить набор ценностных ориентиров.

Ценность истины – это ценность научного познания как части культуры человечества, разума, понимания сущности бытия мироздания.

Ценность человека как разумного существа, стремящегося к познанию мира и самосовершенствованию.

Ценность труда и творчества как естественного условия человеческой деятельности и жизни.

Ценность свободы как свободы выбора и предъявления человеком своих мыслей и поступков, но свободы, естественно ограниченной нормами и правилами поведения в обществе.

Ценность гражданственности – осознание человеком себя как члена общества, народа, представителя страны и государства.

Ценность патриотизма – одно из проявлений духовной зрелости человека, выражающееся в любви к России, народу, в осознанном желании служить Отечеству.

В начальной школе на уроках на уроках математики основными формами работы с учащимися являются совместная учебная деятельность, коллективный способ обучения. Основные методы обучения – проблемное изложение, частично – поисковый, исследовательский.

Важную роль в проведении контроля с точки зрения выстраивания дифференцированного подхода к учащимся имеют тетради для самостоятельных и контрольных работ (1 кл.) и тетради для контрольных работ (2–4 кл.). Они включают, в соответствии с принципом минимакса, не только обязательный минимум (необходимые требования), который должны усвоить все ученики, но и максимум, который они могут усвоить. При этом задания разного уровня сложности выделены в группы: задания необходимого, программного и максимального уровней, при этом ученики должны выполнить задания необходимого уровня и могут выбирать задания других уровней как дополнительные и необязательные; акцент работ сделан на обязательном минимуме и самых важнейших положениях максимума (минимакс).

Особенно следует отметить такой эффективный элемент контроля, связанный с использованием проблемно-диалогической технологии, как самостоятельная оценка и актуализация знаний перед началом изучения нового материала. В этом случае детям предлагается самим сформулировать необходимые для решения возникшей проблемы знания и умения и, как следствие, самим выбрать или даже придумать задания для повторения, закрепления и обобщения изученного ранее. Такая работа является одним из наиболее эффективных приёмов диагностики реальной сформированности предметных и познавательных умений у учащихся и позволяет педагогу выстроить свою деятельность с точки зрения дифференциации работы с ними.

В качестве форм диагностики уровня знаний учащихся по предмету используются:

  • Контрольная работа;

  • Тестирование;

  • Математический диктант;

  • Проверочная работа.

Для тематического контроля предназначены проверочные и контрольные работы по итогам изучения каждой темы. Проверочные и контрольные работы помещены в тетрадях на печатной основе (Т.Е.Демидова)

Выбор программы по математике под редакцией Т.Е.Демидова обусловлен тем, что автор программы является составителем учебно – методического комплекта, который позволяет реализовать в полной мере учебную программу по математике, и входит в образовательную программу «Школа 2100».

Количество часов, отведенных учебным планом МОУ «Гимназия № 6» г. Воркуты на освоение содержания программы соответствует требованиям Федерального государственного образовательного стандарта начального общего образования: предмет «Математика» изучается с 1-го по 4-й класс. Общий объём учебного времени составляет 540 часов (132 ч. – 1 класс, 136 ч. 2 – 4 классы) по 4 часа в неделю.

















Общая характеристика учебного предмета

Данный курс создан на основе личностно ориентированных, деятельностно – ориентированных и культурно ориентированных принципов, сформулированных в образовательной программе «Школа 2100», основной целью которой является формирование функционально грамотной личности, готовой к активной деятельности и непрерывному образованию в современном обществе, владеющей системой математических знаний и умений, позволяющих применять эти знания для решения практических жизненных задач, руководствуясь при этом идейно-нравственными, культурными и этическими принципами, нормами поведения, которые формируются в ходе учебно – воспитательного процесса.

Важнейшей отличительной особенностью данного курса с точки зрения содержания является включение наряду с общепринятыми для начальной школы линиями «Числа и действия над ними», «Текстовые задачи», «Величины», «Элементы геометрии», «Элементы алгебры», ещё и таких содержательных линий, как «Стохастика» и «Занимательные и нестандартные задачи». Кроме того, следует отметить, что предлагаемый курс математики содержит материалы для системной проектной деятельности и работы с жизненными (компетентностными) задачами.

Цели обучения в предлагаемом курсе математики в 1 – 4 классах, сформулированные как линии развития личности ученика средствами предмета: уметь

использовать математические представления для описания окружающего мира (предметов, процессов, явлений) в количественном и пространственном отношении;

производить вычисления для принятия решений в различных жизненных ситуациях;

читать и записывать сведения об окружающем мире на языке математики;

формировать основы рационального мышления, математической речи и аргументации;

работать в соответствии с заданными алгоритмами;

узнавать в объектах окружающего мира известные геометрические формы и работать с ними;

вести поиск информации (фактов, закономерностей, оснований для упорядочивания), преобразовать её в удобные для изучения и применения формы.

В результате освоения предметного содержания предлагаемого курса математики у учащихся предполагается формирование универсальных учебных действий (познавательных, регулятивных, коммуникативных) позволяющих достигать предметных, метапредметных и личностных результатов.

Познавательные: в предлагаемом курсе математики изучаемые определения и правила становятся основой формирования умений выделять признаки и свойства объектов. В процессе вычислений, измерений, поиска решения задач у учеников формируются основные мыслительные операции (анализа, синтеза, классификации, сравнения, аналогии и т.д.), умения различать обоснованные и необоснованные суждения, обосновывать этапы решения учебной задачи, производить анализ и преобразование информации (используя при решении самых разных математических задач простейшие предметные, знаковые, графические модели, таблицы, диаграммы, строя и преобразовывая их в соответствии с содержанием задания). Решая задачи, рассматриваемые в данном курсе, можно выстроить индивидуальные пути работы с математическим содержанием, требующие различного уровня логического мышления. Отличительной особенностью рассматриваемого курса математики является раннее появление (уже в первом классе) содержательного компонента «Элементы логики, комбинаторики, статистики и теории вероятностей», что обусловлено активной пропедевтикой этого компонента в начальной школе.

Регулятивные: математическое содержание позволяет развивать и эту группу умений. В процессе работы ребёнок учится самостоятельно определять цель своей деятельности, планировать её, самостоятельно двигаться по заданному плану, оценивать и корректировать полученный результат (такая работа задана самой структурой учебника).

Коммуникативные: в процессе изучения математики осуществляется знакомство с математическим языком, формируются речевые умения: дети учатся высказывать суждения с использованием математических терминов и понятий, формулировать вопросы и ответы в ходе выполнения задания, доказательства верности или неверности выполненного действия, обосновывают этапы решения учебной задачи. Работая в соответствии с инструкциями к заданиям учебника, дети учатся работать в парах, выполняя заданные в учебнике проекты в малых группах. Умение достигать результата, используя общие интеллектуальные усилия и практические действия, является важнейшим умением для современного человека.

Образовательные и воспитательные задачи обучения математике решаются комплексно. В основе методического аппарата курса лежит проблемно-диалогическая технология, технология правильного типа читательской деятельности и технология оценивания достижений, позволяющие формировать у учащихся умение обучаться с высокой степенью самостоятельности. При этом в первом классе проблемная ситуация естественным образом строится на дидактической игре.

Деятельностный подход – основной способ получения знаний

В результате освоения предметного содержания курса математики у учащихся должны сформироваться как предметные, так и общие учебные умения, а также способы познавательной деятельности. Такая работа может эффективно осуществляться только в том случае, если ребёнок будет испытывать мотивацию к деятельности, для него будут не только ясны рассматриваемые знания и алгоритмы действий, но и представлена интересная возможность для их реализации.

Предполагается, что образовательные и воспитательные задачи обучения математике будут решаться комплексно. Учитель имеет право самостоятельного выбора технологий, методик и приёмов педагогической деятельности, однако при этом необходимо понимать, что необходимо эффективное достижение целей, обозначенных федеральным государственным образовательным стандартом начального общего образования.

Рассматриваемый курс математики предлагает решение новых образовательных задач путём использования современных образовательных технологий.

В основе методического аппарата курса лежит проблемно-диалогическая технология, технология правильного типа читательской деятельности и технология оценивания достижений, позволяющие формировать у учащихся умение обучаться с высокой степенью самостоятельности. При этом в первом классе проблемная ситуация естественным образом строится на дидактической игре.

Материалы курса организованы таким образом, чтобы педагог и дети могли осуществлять дифференцированный подход в обучении и обладали правом выбора уровня решаемых математических задач.

В предлагаемом курсе математики представлены задачи разного уровня сложности по изучаемой теме. Это создаёт возможность построения для каждого ученика самостоятельного образовательного маршрута. Важно, чтобы его вместе планировали ученик и учитель. Именно по этой причине авторы не разделили материалы учебника на основной и дополнительный – это делают дети под руководством учителя на уроке. Учитель при этом ориентируется на требования стандартов российского образования как основы изучаемого материала.

Согласно принципу минимакса учебники содержат учебные материалы, входящие в минимум содержания (базовый уровень), и задачи повышенного уровня сложности (программный и максимальный уровень), не обязательные для всех. Таким образом, ученик должен освоить минимум, но может освоить максимум.

Важнейшей отличительной особенностью данного курса с точки зрения деятельностного подхода является включение в него специальных заданий на применение существующих знаний «для себя» через дидактическую игру, проектную деятельность и работу с жизненными (компетентностными) задачами.

Контроль за усвоением знаний

Оценка усвоения знаний и умений в предлагаемом учебно-методическом курсе математики осуществляется в процессе повторения и обобщения, выполнения текущих самостоятельных работ на этапе актуализации знаний и на этапе повторения, закрепления и обобщения изученного практически на каждом уроке, проведения этапа контроля на основе специальных тетрадей, содержащих текущие и итоговые контрольные работы.

Особенно следует отметить такой эффективный элемент контроля, связанный с использованием проблемно – диалогической технологии, как самостоятельная оценка и актуализация знаний перед началом изучения нового материала. В этом случае детям предлагается самим сформулировать необходимые для решения возникшей проблемы знания и умения и, как следствие, самим выбрать или даже придумать задания для повторения, закрепления и обобщения изученного ранее. Такая работа является одним из наиболее эффективных приёмов диагностики реальной сформированности предметных и познавательных умений у учащихся и позволяет педагогу выстроить свою деятельность с точки зрения дифференциации работы с ними.

Важную роль в проведении контроля с точки зрения выстраивания дифференцированного подхода к учащимся имеют тетради для самостоятельных и контрольных работ (1 кл.) и тетради для контрольных работ (2 – 4 кл.). Они включают, в соответствии с принципом минимакса, не только обязательный минимум (необходимые требования), который  должны усвоить все ученики, но и максимум, который они могут усвоить. При этом задания разного уровня сложности выделены в группы: задания необходимого, программного и максимального уровней, при этом ученики должны выполнить задания необходимого уровня и могут выбирать задания других уровней как дополнительные и необязательные; акцент работ сделан на обязательном минимуме и самых важнейших положениях максимума (минимакс).

Положительные оценки и отметки за задания текущих и итоговых контрольных работ являются своеобразным зачётом по изучаемым темам. При этом срок получения зачёта не должен быть жёстко ограничен (например, ученики должны сдать все текущие темы до конца четверти). Это учит школьников планированию своих действий. Но видеть результаты своей работы школьники должны постоянно, эту роль могут играть:

таблица требований по предмету в «Дневнике школьника». В ней ученик (с помощью учителя) выставляет свои отметки за разные задания, демонстрирующие развитие соответствующих умений;

портфель достижений школьника – папка, в которую помещаются оригиналы или копии (бумажные, цифровые) выполненных учеником заданий, работ, содержащих не только отметку (балл), но и оценку (словесную характеристику его успехов и советов по улучшению, устранению возможных недостатков).

Накопление этих отметок и оценок показывает результаты продвижения в усвоении новых знаний и умений каждым учеником, развитие его умений действовать.







Личностные, метапредметные и предметные результаты

освоения предмета «Математика»

1 класс

Личностными результатами изучения курса «Математика» в 1-м классе является формирование следующих умений:

  • Определять и высказывать под руководством педагога самые простые общие для всех людей правила поведения при сотрудничестве (этические нормы).

  • В предложенных педагогом ситуациях общения и сотрудничества, опираясь на общие для всех простые правила поведения, делать выбор, при поддержке других участников группы и педагога, как поступить.

Метапредметными результатами изучения курса «Математика» в 1-м классе являются формирование следующих универсальных учебных действий (УУД).

Регулятивные УУД:

  • Определять и формулировать цель деятельности на уроке с помощью учителя.

  • Проговаривать последовательность действий на уроке.

  • Учиться высказывать своё предположение (версию) на основе работы с иллюстрацией учебника.

  • Учиться работать по предложенному учителем плану.

  • Учиться отличать верно выполненное задание от неверного.

  • Учиться совместно с учителем и другими учениками давать эмоциональную оценку деятельности класса на уроке.

Познавательные УУД:

  • Ориентироваться в своей системе знаний: отличать новое от уже известного с помощью учителя.

  • Делать предварительный отбор источников информации: ориентироваться в учебнике (на развороте, в оглавлении, в словаре).

  • Добывать новые знания: находить ответы на вопросы, используя учебник, свой жизненный опыт и информацию, полученную на уроке.

  • Перерабатывать полученную информацию: делать выводы в результате совместной работы всего класса.

  • Перерабатывать полученную информацию: сравнивать и группировать такие математические объекты, как числа, числовые выражения, равенства, неравенства, плоские геометрические фигуры.

  • Преобразовывать информацию из одной формы в другую: составлять математические рассказы и задачи на основе простейших математических моделей (предметных, рисунков, схематических рисунков, схем); находить и формулировать решение задачи с помощью простейших моделей (предметных, рисунков, схематических рисунков, схем).

Коммуникативные УУД:

  • Донести свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне одного предложения или небольшого текста).

  • Слушать и понимать речь других.

  • Читать и пересказывать текст.

  • Совместно договариваться о правилах общения и поведения в школе и следовать им.

  • Учиться выполнять различные роли в группе (лидера, исполнителя, критика).

Предметными результатами изучения курса «Математика» в 1-м классе являются формирование следующих умений.

1-й уровень (необходимый)

Учащиеся должны уметь использовать при выполнении заданий:

  • знание названий и последовательности чисел от 1 до 20; разрядный состав чисел от 11 до 20;

  • знание названий и обозначений операций сложения и вычитания;

  • использовать знание таблицы сложения однозначных чисел и соответствующих случаев вычитания в пределах 10 (на уровне навыка);

  • сравнивать группы предметов с помощью составления пар;

  • читать, записывать и сравнивать числа в пределах 20;

  • находить значения выражений, содержащих одно действие (сложение или вычитание);

  • решать простые задачи:

а) раскрывающие смысл действий сложения и вычитания;

б) задачи, при решении которых используются понятия «увеличить на ...», «уменьшить на»

в) задачи на разностное сравнение;

распознавать геометрические фигуры: точку, прямую, луч, кривую незамкнутую, кривую замкнутую, круг, овал, отрезок, ломаную, угол, многоугольник, прямоугольник, квадрат.

2–й уровень (программный)

Учащиеся должны уметь:

  • в процессе вычислений осознанно следовать алгоритму сложения и вычитания в пределах 20;

  • использовать в речи названия компонентов и результатов действий сложения и вычитания, использовать знание зависимости между ними в процессе поиска решения и при оценке результатов действий;

  • использовать в процессе вычислений знание переместительного свойства сложения;

  • использовать в процессе измерения знание единиц измерения длины, объёма и массы (сантиметр, дециметр, литр, килограмм);

  • выделять как основание классификации такие признаки предметов, как цвет, форма, размер, назначение, материал;

  • выделять часть предметов из большей группы на основании общего признака (видовое отличие), объединять группы предметов в большую группу (целое) на основании общего признака (родовое отличие);

  • производить классификацию предметов, математических объектов по одному основанию;

  • использовать при вычислениях алгоритм нахождения значения выражений без скобок, содержащих два действия (сложение и/или вычитание);

  • сравнивать, складывать и вычитать именованные числа;

  • решать уравнения вида а ± х = b; х а = b;

  • решать задачи в два действия на сложение и вычитание;

  • узнавать и называть плоские геометрические фигуры: треугольник, четырёхугольник, пятиугольник, шестиугольник, многоугольник; выделять из множества четырёхугольников прямоугольники, из множества прямоугольников – квадраты, из множества углов – прямой угол;

  • определять длину данного отрезка;

  • читать информацию, записанную в таблицу, содержащую не более трёх строк и трёх столбцов;

  • заполнять таблицу, содержащую не более трёх строк и трёх столбцов;

  • решать арифметические ребусы и числовые головоломки, содержащие не более двух действий.









2 класс

Личностными результатами изучения предметно-методического курса «Математика» во 2-м классе является формирование следующих умений:

-самостоятельно определять и высказывать самые простые, общие для всех людей правила поведения при совместной работе и сотрудничестве (этические нормы).

-в предложенных педагогом ситуациях общения и сотрудничества, опираясь на общие для всех простые правила поведения, самостоятельно делать выбор, какой поступок совершить.

Средством достижения этих результатов служит учебный материал и задания учебника, нацеленные на 2-ю линию развития – умение определять своё отношение к миру.

Метапредметными результатами изучения курса «Математика» во 2-м классе являются формирование следующих универсальных учебных действий.

Регулятивные УУД:

- определять цель деятельности на уроке с помощью учителя и самостоятельно.

-учиться совместно с учителем обнаруживать и формулировать учебную проблему совместно с учителем (для этого в учебнике специально предусмотрен ряд уроков).

-учиться планировать учебную деятельность на уроке.

-высказывать свою версию, пытаться предлагать способ её проверки (на основе продуктивных заданий в учебнике).

-работая по предложенному плану, использовать необходимые средства (учебник, простейшие приборы и инструменты).

Средством формирования этих действий служит технология проблемного диалога на этапе изучения нового материала.

-определять успешность выполнения своего задания в диалоге с учителем.

Средством формирования этих действий служит технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

-ориентироваться в своей системе знаний: понимать, что нужна дополнительная информация (знания) для решения учебной задачи в один шаг.

-делать предварительный отбор источников информации для решения учебной задачи.

-добывать новые знания: находить необходимую информацию как в учебнике, так и в предложенных учителем словарях и энциклопедиях (в учебнике 2-го класса для этого предусмотрена специальная «энциклопедия внутри учебника»).

-добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.).

-перерабатывать полученную информацию: наблюдать и делать самостоятельные выводы.

Средством формирования этих действий служит учебный материал и задания учебника, нацеленные на 1-ю линию развития – умение объяснять мир.

Коммуникативные УУД:

-донести свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне одного предложения или небольшого текста).

-слушать и понимать речь других.

-выразительно читать и пересказывать текст.

-вступать в беседу на уроке и в жизни.

Средством формирования этих действий служит технология проблемного диалога (побуждающий и подводящий диалог) и технология продуктивного чтения.

-совместно договариваться о правилах общения и поведения в школе и следовать им.

-учиться выполнять различные роли в группе (лидера, исполнителя, критика).

Средством формирования этих действий служит работа в малых группах (в методических рекомендациях дан такой вариант проведения уроков).

Предметными результатами изучения курса «Математика» во 2-м классе являются формирование следующих умений.

1-й уровень (необходимый)

Учащиеся должны уметь:

- использовать при выполнении заданий названия и последовательность чисел от 1 до 100;

- использовать при вычислениях на уровне навыка знание табличных случаев сложения однозначных чисел и соответствующих им случаев вычитания в пределах 20;

- использовать при выполнении арифметических действий названия и обозначения операций умножения и деления;

- использовать при вычислениях на уровне навыка знание табличных случаев умножения однозначных чисел и соответствующих им случаев деления;

- осознанно следовать алгоритму выполнения действий в выражениях со скобками и без них;

- использовать в речи названия единиц измерения длины, массы, объёма: метр, дециметр, сантиметр, килограмм; литр.

- читать, записывать и сравнивать числа в пределах 100;

- осознанно следовать алгоритмам устного и письменного сложения и вычитания чисел в пределах 100;

- решать простые задачи:

а) раскрывающие смысл действий сложения, вычитания, умножения и деления;

б) использующие понятия «увеличить в (на)...», «уменьшить в (на)...»;

в) на разностное и кратное сравнение;

- находить значения выражений, содержащих 2–3 действия (со скобками и без скобок);

- решать уравнения вида а ± х = b; х – а = b;

- измерять длину данного отрезка, чертить отрезок данной длины;

- узнавать и называть плоские углы: прямой, тупой и острый;

- узнавать и называть плоские геометрические фигуры: треугольник, четырёхугольник, пятиугольник, шестиугольник, многоугольник; выделять из множества четырёхугольников прямоугольники, из множества прямоугольников – квадраты;

- различать истинные и ложные высказывания (верные и неверные равенства).

2-й уровень (программный)

Учащиеся должны уметь:

- использовать при решении учебных задач формулы периметра квадрата и прямоугольника;

- пользоваться при измерении и нахождении площадей единицами измерения площади: 1 см2, 1 дм2.

- выполнять умножение и деление чисел с 0, 1, 10;

- решать уравнения вида а ± х = b; х – а = b; а ∙ х = b; а : х = b; х : а = b;

- находить значения выражений вида а ± 5; 4 – а; а : 2; а ∙ 4; 6 : а при заданных числовых значениях переменной;

- решать задачи в 2–3 действия, основанные на четырёх арифметических операциях;

- находить длину ломаной и периметр многоугольника как сумму длин его сторон;

- использовать знание формул периметра и площади прямоугольника (квадрата) при решении задач;

- чертить квадрат по заданной стороне, прямоугольник по заданным двум сторонам;

- узнавать и называть объёмные фигуры: куб, шар, пирамиду;

- записывать в таблицу данные, содержащиеся в тексте;

- читать информацию, заданную с помощью линейных диаграмм;

- решать арифметические ребусы и числовые головоломки, содержащие два действия (сложение и/или вычитание);

- составлять истинные высказывания (верные равенства и неравенства);

- заполнять магические квадраты размером 3×3;

- находить число перестановок не более чем из трёх элементов;

- находить число пар на множестве из 3–5 элементов (число сочетаний по 2);

- находить число пар, один элемент которых принадлежит одному множеству, а другой – второму множеству;

- проходить числовые лабиринты, содержащие двое-трое ворот;

- объяснять решение задач по перекладыванию одной-двух палочек с заданным условием и решением;

- решать простейшие задачи на разрезание и составление фигур;

- уметь объяснить, как получен результат заданного математического фокуса.










































3 класс


Личностными результатами изучения учебно-методического курса «Математика» является формирование следующих умений:

Самостоятельно определять и высказывать самые простые общие для всех людей правила поведения при общении и сотрудничестве (этические нормы общения и сотрудничества).

В самостоятельно созданных ситуациях общения и сотрудничества, опираясь на общие для всех простые правила поведения, делать выбор, какой поступок совершить.

Средством достижения этих результатов служит учебный материал и задания учебника, нацеленные на 2-ю линию развития – умение определять свое отношение к миру.

Метапредметными результатами изучения учебно-методического курса «Математика» в 3-ем классе являются формирование следующих универсальных учебных действий.

Регулятивные УУД:

Самостоятельно формулировать цели урока после предварительного обсуждения.

Учиться совместно с учителем обнаруживать и формулировать учебную проблему.

Составлять план решения проблемы (задачи) совместно с учителем.

Работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки с помощью учителя.

Средством формирования этих действий служит технология проблемного диалога на этапе изучения нового материала.

В диалоге с учителем учиться вырабатывать критерии оценки и определять степень успешности выполнения своей работы и работы всех, исходя из имеющихся критериев.

Средством формирования этих действий служит технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

Ориентироваться в своей системе знаний: самостоятельно предполагать, какая информация нужна для решения учебной задачи в один шаг.

Отбирать необходимые для решения учебной задачи источники информации среди предложенных учителем словарей, энциклопедий, справочников.

Добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.).

Перерабатывать полученную информацию: сравнивать и группировать факты и явления; определять причины явлений, событий.

Перерабатывать полученную информацию: делать выводы на основе обобщения знаний.

Преобразовывать информацию из одной формы в другую: составлять простой план учебно-научного текста.

Преобразовывать информацию из одной формы в другую: представлять информацию в виде текста, таблицы, схемы.

Средством формирования этих действий служит учебный материал и задания учебника, нацеленные на 1-ю линию развития – умение объяснять мир.

Коммуникативные УУД:

Донести свою позицию до других: оформлять свои мысли в устной и письменной речи с учётом своих учебных и жизненных речевых ситуаций.

Донести свою позицию до других: высказывать свою точку зрения и пытаться её обосновать, приводя аргументы.

Слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения.

Средством формирования этих действий служит технология проблемного диалога (побуждающий и подводящий диалог).

Читать вслух и про себя тексты учебников и при этом: вести «диалог с автором» (прогнозировать будущее чтение; ставить вопросы к тексту и искать ответы; проверять себя); отделять новое от известного; выделять главное; составлять план.

Средством формирования этих действий служит технология продуктивного чтения.

Договариваться с людьми: выполняя различные роли в группе, сотрудничать в совместном решении проблемы (задачи).

Учиться уважительно, относиться к позиции другого, пытаться договариваться.

Средством формирования этих действий служит работа в малых группах.

Предметными результатами изучения курса «Математика» в 3-м классе являются формирование следующих умений.

1-й уровень (необходимый)

Учащиеся должны уметь:

  • использовать при решении учебных задач названия и последовательность чисел в пределах 1000 (с какого числа начинается натуральный ряд чисел, как образуется каждое следующее число в этом ряду);

  • объяснять, как образуется каждая следующая счётная единица;

  • использовать при решении учебных задач единицы измерения длины (мм, см, дм, м, км), объёма (литр, см³, дм³, м³), массы (кг, центнер), площади (см², дм², м²), времени (секунда, минута, час, сутки, неделя, месяц, год, век) и соотношение между единицами измерения каждой из величин;

  • использовать при решении учебных задач формулы площади и периметра прямоугольника (квадрата);

  • пользоваться для объяснения и обоснования своих действий изученной математической терминологией;

  • читать, записывать и сравнивать числа в пределах 1000;

  • представлять любое трёхзначное число в виде суммы разрядных слагаемых;

  • выполнять устно умножение и деление чисел в пределах 100 (в том числе и деление с остатком);

  • выполнять умножение и деление с 0; 1; 10; 100;

  • осознанно следовать алгоритмам устных вычислений при сложении, вычитании, умножении и делении трёхзначных чисел, сводимых к вычислениям в пределах 100, и алгоритмам письменных вычислений при сложении, вычитании, умножении и делении чисел в остальных случаях;

  • осознанно следовать алгоритмам проверки вычислений;

  • использовать при вычислениях и решениях различных задач распределительное свойство умножения и деления относительно суммы (умножение и деление суммы на число), сочетательное свойство умножения для рационализации вычислений;

  • читать числовые и буквенные выражения, содержащие не более двух действий с использованием названий компонентов;

  • решать задачи в 1–2 действия на все арифметические действия арифметическим способом (с опорой на схемы, таблицы, краткие записи и другие модели);

  • находить значения выражений в 2–4 действия;

  • использовать знание соответствующих формул площади и периметра прямоугольника (квадрата) при решении различных задач;

  • использовать знание зависимости между компонентами и результатами действий при решении уравнений вида а ± х = b; а ∙ х = b; а : х = b;

  • строить на клетчатой бумаге прямоугольник и квадрат по заданным длинам сторон;

  • сравнивать величины по их числовым значениям; выражать данные величины в изученных единицах измерения;

  • определять время по часам с точностью до минуты;

  • сравнивать и упорядочивать объекты по разным признакам: длине, массе, объёму;

  • устанавливать зависимость между величинами, характеризующими процессы: движения (пройденный путь, время, скорость), купли – продажи (количество товара, его цена и стоимость).

2-й уровень (программный)

Учащиеся должны уметь:

  • использовать при решении различных задач знание формулы объёма прямоугольного параллелепипеда (куба);

  • использовать при решении различных задач знание формулы пути;

  • использовать при решении различных задач знание о количестве, названиях и последовательности дней недели, месяцев в году;

  • находить долю от числа, число по доле;

  • решать задачи в 2–3 действия на все арифметические действия арифметическим способом (с опорой на схемы, таблицы, краткие записи и другие модели);

  • находить значения выражений вида а ± b; а ∙ b; а : b при заданных значениях переменных;

  • решать способом подбора неравенства с одной переменной вида: а ± х < b; а ∙ х > b.

  • использовать знание зависимости между компонентами и результатами действий при решении уравнений вида: х ± а = с ± b; а − х = с ± b; х ± a = с ∙ b; а − х = с : b; х : а = с ± b;

  • использовать заданные уравнения при решении текстовых задач;

  • вычислять объём параллелепипеда (куба);

  • вычислять площадь и периметр составленных из прямоугольников фигур;

  • выделять из множества треугольников прямоугольный и тупоугольный, равнобедренный и равносторонний треугольники;

  • строить окружность по заданному радиусу;

  • выделять из множества геометрических фигур плоские и объёмные фигуры;

  • узнавать и называть объёмные фигуры: параллелепипед, шар, конус, пирамиду, цилиндр;

  • выделять из множества параллелепипедов куб;

  • решать арифметические ребусы и числовые головоломки, содержащие четыре арифметических действия (сложение, вычитание, умножение, деление);

  • устанавливать принадлежность или непринадлежность множеству данных элементов;

  • различать истинные и ложные высказывания с кванторами общности и существования;

  • читать информацию, заданную с помощью столбчатых, линейных диаграмм, таблиц, графов;

  • строить несложные линейные и столбчатые диаграммы по заданной в таблице информации;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;

  • выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;

  • правильно употреблять термины «чаще», «реже», «случайно», «возможно», «невозможно» при формулировании различных высказываний;

  • составлять алгоритмы решения простейших задач на переливания;

  • составлять алгоритм поиска одной фальшивой монеты на чашечных весах без гирь (при количестве монет не более девяти);

  • устанавливать, является ли данная кривая уникурсальной, и обводить её.




























4 класс


Предметными результатами изучения курса «Математика» являются формирование следующих умений.

1-й уровень (необходимый)

Учащиеся должны уметь:

  • использовать при решении различных задач название и последовательность чисел в натуральном ряду в пределах 1000000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);

  • объяснять, как образуется каждая следующая счётная единица;

  • использовать при решении различных задач названия и последовательность разрядов в записи числа;

  • использовать при решении различных задач названия и последовательность первых трёх классов;

  • рассказывать, сколько разрядов содержится в каждом классе;

  • объяснять соотношение между разрядами;

  • использовать при решении различных задач и обосновании своих действий знание о количестве разрядов, содержащихся в каждом классе;

  • использовать при решении различных задач и обосновании своих действий знание о том, сколько единиц каждого класса содержится в записи числа;

  • использовать при решении различных задач и обосновании своих действий знание о позиционности десятичной системы счисления;

  • использовать при решении различных задач знание о единицах измерения величин (длина, масса, время, площадь), соотношении между ними;

  • использовать при решении различных задач знание о функциональной связи между величинами (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа);

  • выполнять устные вычисления (в пределах 1000000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях, выполнять проверку правильности вычислений;

  • выполнять умножение и деление с 1000;

  • решать простые и составные задачи, раскрывающие смысл арифметических действий, отношения между числами и зависимость между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа);

  • решать задачи, связанные с движением двух объектов: навстречу и в противоположных направлениях;

  • решать задачи в 2–3 действия на все арифметические действия арифметическим способом (с опорой на схемы, таблицы, краткие записи и другие модели);

  • осознанно создавать алгоритмы вычисления значений числовых выражений, содержащих до 3−4 действий (со скобками и без них), на основе знания правила о порядке выполнения действий и знания свойств арифметических действий и следовать этим алгоритмам, включая анализ и проверку своих действий;

  • прочитать записанное с помощью букв простейшее выражение (сумму, разность, произведение, частное), когда один из компонентов действия остаётся постоянным и когда оба компонента являются переменными;

  • осознанно пользоваться алгоритмом нахождения значения выражений с одной переменной при заданном значении переменных;

  • использовать знание зависимости между компонентами и результатами действий сложения, вычитания, умножения, деления при решении уравнений вида: a ± x = b; x − a = b; a ∙ x = b; a : x = b; x : a = b;

  • уметь сравнивать значения выражений, содержащих одно действие; понимать и объяснять, как изменяется результат сложения, вычитания, умножения и деления в зависимости от изменения одной из компонент.

  • вычислять объём параллелепипеда (куба);

  • вычислять площадь и периметр фигур, составленных из прямоугольников;

  • выделять из множества треугольников прямоугольный и тупоугольный, равнобедренный и равносторонний треугольники;

  • строить окружность по заданному радиусу;

  • выделять из множества геометрических фигур плоские и объёмные фигуры;

  • распознавать геометрические фигуры: точка, линия (прямая, кривая), отрезок, луч, ломаная, многоугольник и его элементы (вершины, стороны, углы), в том числе треугольник, прямоугольник (квадрат), угол, круг, окружность (центр, радиус), параллелепипед (куб) и его элементы (вершины, ребра, грани), пирамиду, шар, конус, цилиндр;

  • находить среднее арифметическое двух чисел.

2-й уровень (программный)

Учащиеся должны уметь:

  • использовать при решении различных задач и обосновании своих действий знание о названии и последовательности чисел в пределах 1000000000.

Учащиеся должны иметь представление о том, как читать, записывать и сравнивать числа в пределах 1000000000;

Учащиеся должны уметь:

  • выполнять прикидку результатов арифметических действий при решении практических и предметных задач;

  • осознанно создавать алгоритмы вычисления значений числовых выражений, содержащих до 6 действий (со скобками и без них), на основе знания правила о порядке выполнения действий и знания свойств арифметических действий и следовать этим алгоритмам, включая анализ и проверку своих действий;

  • находить часть от числа, число по его части, узнавать, какую часть одно число составляет от другого;

  • иметь представление о решении задач на части;

  • понимать и объяснять решение задач, связанных с движением двух объектов: вдогонку и с отставанием;

  • читать и строить вспомогательные модели к составным задачам;

  • распознавать плоские геометрические фигуры при изменении их положения на плоскости;

  • распознавать объёмные тела – параллелепипед (куб), пирамида, конус, цилиндр – при изменении их положения в пространстве;

  • находить объём фигур, составленных из кубов и параллелепипедов;

  • использовать заданные уравнения при решении текстовых задач;

  • решать уравнения, в которых зависимость между компонентами и результатом действия необходимо применить несколько раз: а ∙ х ± b = с; (х ± b) : с = d; a ± x ± b = с и др.;

  • читать информацию, записанную с помощью круговых диаграмм;

  • решать простейшие задачи на принцип Дирихле;

  • находить вероятности простейших случайных событий;

  • находить среднее арифметическое нескольких чисел.













Содержание учебного предмета «Математика»


  1. класс (132 ч– 4 часа в неделю)



Общие понятия (6 ч)

Признаки предметов.

Свойства (признаки) предметов: цвет, форма, размер, назначение, материал, общее название.

Выделение предметов из группы по заданным свойствам, сравнение предметов, разбиение предметов на группы (классы) в соответствии с указанными свойствами.

Отношения.

Сравнение групп предметов. Графы и их применение. Равно, не равно, столько же.

Числа и операции над ними (50 ч )

Числа от 1 до 10.

Числа от 1 до 9. Натуральное число как результат счёта и мера величины. Реальные и идеальные модели понятия «однозначное число». Арабские и римские цифры.

Состав чисел от 2 до 9. Сравнение чисел, запись отношений между числами. Числовые равенства, неравенства. Последовательность чисел. Получение числа прибавлением 1 к предыдущему числу, вычитанием 1 из числа, непосредственно следующего за ним при счёте.

Ноль. Число 10. Состав числа 10.

Числа от 1 до 20.

Устная и письменная нумерация чисел от 1 до 20. Десяток. Образование и название чисел от 1 до 20. Модели чисел.

Чтение и запись чисел. Разряд десятков и разряд единиц, их место в записи чисел.

Сравнение чисел, их последовательность. Представление числа в виде суммы разрядных слагаемых.

Сложение и вычитание в пределах десяти.

Объединение групп предметов в целое (сложение). Удаление группы предметов (части) из целого (вычитание). Связь между сложением и вычитанием на основании представлений о целом и частях. Соотношение целого и частей.

Сложение и вычитание чисел в пределах 10. Компоненты сложения и вычитания. Изменение результатов сложения и вычитания в зависимости от изменения компонент. Взаимосвязь операций сложения и вычитания.

Переместительное свойство сложения. Приёмы сложения и вычитания.

Табличные случаи сложения однозначных чисел. Соответствующие случаи вычитания.

Понятия «увеличить на …», «уменьшить на …», «больше на …», «меньше на …».

Сложение и вычитание чисел в пределах 20.

Алгоритмы сложения и вычитания однозначных чисел с переходом через разряд. Табличные случаи сложения и вычитания чисел в пределах 20. (Состав чисел от 11 до 19.)

Величины и их измерение (10 ч)

Величины: длина, масса, объём и их измерение. Общие свойства величин.

Единицы измерения величин: сантиметр, дециметр, килограмм, литр. Сравнение, сложение и вычитание именованных чисел. Аналогия десятичной системы мер длины (1 см, 1 дм) и десятичной системы записи двузначных чисел.

Текстовые задачи (26 ч)

Задача, её структура. Простые и составные текстовые задачи:

раскрывающие смысл действий сложения и вычитания;

задачи, при решении которых используются понятия «увеличить на …», «уменьшить на …»; задачи на разностное сравнение.

Элементы геометрии (10 ч)

Ориентация в пространстве и на плоскости: «над», «под», «выше», «ниже», «между», «слева», «справа», «посередине» и др. Точка. Линии: прямая, кривая незамкнутая, кривая замкнутая. Луч. Отрезок. Ломаная. Углы: прямые и непрямые. Многоугольники как замкнутые ломаные: треугольник, четырёхугольник, прямоугольник, квадрат. Круг, овал. Модели простейших геометрических фигур.

Различные виды классификаций геометрических фигур.

Вычисление длины ломаной как суммы длин её звеньев.

Вычисление суммы длин сторон прямоугольника и квадрата без использования термина «периметр».

Элементы алгебры (10 ч)

Равенства, неравенства, знаки «=», «>»; «<». Числовые выражения. Чтение, запись, нахождение значений выражений. Порядок выполнения действий в выражениях, содержащих два и более действий. Сравнение значений выражений вида а + 5 и а + 6; а − 5 и а − 6. Равенство и неравенство.

Уравнения вида а ± х = b; х − а = b.

Элементы стохастики (10 ч)

Таблицы. Строки и столбцы. Начальные представления о графах. Понятие о взаимно однозначном соответствии.

Задачи на расположение и выбор (перестановку) предметов.

Занимательные и нестандартные задачи (10 ч)

Числовые головоломки, арифметические ребусы. Логические задачи на поиск закономерности и классификацию.

Арифметические лабиринты, математические фокусы. Задачи на разрезание и составление фигур. Задачи с палочками.

Итоговое повторение ( 4 ч)


2 класс (136 ч– 4 часа в неделю)


Числа и операции над ними (52 ч)

Числа от 1 до 100.

Десяток. Счёт десятками. Образование и название двузначных чисел. Модели двузначных чисел. Чтение и запись чисел. Сравнение двузначных чисел, их последовательность. Представление двузначного числа в виде суммы разрядных слагаемых.

Устная и письменная нумерация двузначных чисел. Разряд десятков и разряд единиц, их место в записи чисел.

Сложение и вычитание чисел.

Операции сложения и вычитания. Взаимосвязь операций сложения и вычитания.

Прямая и обратная операция.

Изменение результатов сложения и вычитания в зависимости от изменения компонент. Свойства сложения и вычитания. Приёмы рациональных вычислений.

Сложение и вычитание двузначных чисел, оканчивающихся нулями.

Устные и письменные приёмы сложения и вычитания чисел в пределах 100.

Алгоритмы сложения и вычитания.

Умножение и деление чисел.

Нахождение суммы нескольких одинаковых слагаемых и представление числа в виде суммы одинаковых слагаемых. Операция умножения. Переместительное свойство умножения.

Операция деления. Взаимосвязь операций умножения и деления. Таблица умножения и деления однозначных чисел.

Частные случаи умножения и деления с 0 и 1. Невозможность деления на 0. Понятия «увеличить в …», «уменьшить в …», «больше в …», «меньше в …». Умножение и деление чисел на 10. Линейные и разветвляющиеся алгоритмы. Задание алгоритмов словесно и с помощью блок-схем.

Величины и их измерение (10 ч)

Длина. Единица измерения длины – метр. Соотношения между единицами измерения длины.

Перевод именованных чисел в заданные единицы (раздробление и превращение).

Сравнение, сложение и вычитание именованных чисел. Умножение и деление именованных чисел на отвлеченное число.

Периметр многоугольника. Формулы периметра квадрата и прямоугольника.

Представление о площади фигуры и её измерение. Площадь прямоугольника и квадрата. Единицы площади: см², дм².

Цена, количество и стоимость товара.

Время. Единица времени – час.

Текстовые задачи (27 ч)

Простые и составные текстовые задачи, при решении которых используется:

смысл действий сложения, вычитания, умножения и деления;

понятия «увеличить в (на)…»; «уменьшить в (на)…»;

разностное и кратное сравнение;

прямая и обратная пропорциональность.

Моделирование задач. Задачи с альтернативным условием.

Элементы геометрии ( 10 ч )

Плоскость. Плоские и объёмные фигуры. Обозначение геометрических фигур буквами.

Острые и тупые углы.

Составление плоских фигур из частей. Деление плоских фигур на части.

Окружность. Круг. Вычерчивание окружностей с помощью циркуля и вырезание кругов. Радиус окружности.

Элементы алгебры (10 ч)

Переменная. Выражения с переменной. Нахождение значений выражений вида а ± 5; 4 − а; а : 2; а ∙ 4; 6 : а при заданных числовых значениях переменной. Сравнение значений выражений вида а ∙ 2 и а ∙ 3; а : 2 и а : 3.

Использование скобок для обозначения последовательности действий. Порядок действий в выражениях, содержащих два и более действия со скобками и без них.

Решение уравнений вида а ± х = b; х − а = b; а − х = b; а : х = b; х : а = b.

Элементы стохастики (10 ч)

Решение комбинаторных задач с помощью таблиц и графов. Чтение информации, заданной с помощью линейных диаграмм.

Первоначальные представления о сборе и накоплении данных. Запись данных, содержащихся в тексте, в таблицу.

Понятие о случайном эксперименте. Понятия «чаще», «реже», «возможно», «невозможно», «случайно».

Занимательные и нестандартные задачи (10 ч)

Высказывания. Истинные и ложные высказывания. Логические задачи. Арифметические лабиринты, магические фигуры, математические фокусы.

Задачи на разрезание и составление фигур. Задачи с палочками.

Уникурсальные кривые.

Итоговое повторение (7 ч)

3 класс (136 ч – 4 часа в неделю)

Числа и операции над ними (52 ч)

Числа от 1 до 1000.

Сотня. Счёт сотнями. Тысяча. Трёхзначные числа. Разряд сотен, десятков, единиц. Разрядные слагаемые. Чтение и запись трёхзначных чисел. Последовательность чисел. Сравнение чисел.

Дробные числа.

Доли. Сравнение долей, нахождение доли числа. Нахождение числа по доле.

Сложение и вычитание чисел.

Операции сложения и вычитания над числами в пределах 1 000. Устное сложение и вычитание чисел в случаях, сводимых к действиям в пределах 100. Письменные приёмы сложения и вычитания трёхзначных чисел.

Умножение и деление чисел в пределах 100.

Операции умножения и деления над числами в пределах 100. Распределительное свойство умножения и деления относительно суммы (умножение и деление суммы на число). Сочетательное свойство умножения. Использование свойств умножения и деления для рационализации вычислений. Внетабличное умножение и деление. Деление с остатком. Проверка деления с остатком. Изменение результатов умножения и деления в зависимости от изменения компонент. Операции умножения и деления над числами в пределах 1000. Устное умножение и деление чисел в случаях, сводимых к действиям в пределах 100; умножение и деление на 100. Письменные приёмы умножения трёхзначного числа на однозначное. Запись умножения «в столбик». Письменные приёмы деления трёхзначных чисел на однозначное. Запись деления «уголком».

Величины и их измерение (10 ч)

Объём. Единицы объёма: 1 см³, 1 дм³, 1 м³. Соотношения между единицами измерения объема. Формулы объема прямоугольного параллелепипеда (куба).

Время. Единицы измерения времени: секунда, минута, час, сутки, неделя, месяц, год. Соотношения между единицами измерения времени. Календарь.

Длина. Единицы длины: 1 мм, 1 км. Соотношения между единицами измерения длины.

Масса. Единица измерения массы: центнер. Соотношения между единицами измерения массы.

Скорость, расстояние. Зависимость между величинами: скорость, время, расстояние.

Текстовые задачи (27 ч)

Решение простых и составных текстовых задач.

Пропедевтика функциональной зависимости при решении задач с пропорциональными величинами. Решение простых задач на движение. Моделирование задач.

Задачи с альтернативным условием.

Элементы геометрии ( 10 ч)

Куб, прямоугольный параллелепипед. Их элементы. Отпечатки объёмных фигур на плоскости.

Виды треугольников: прямоугольный, остроугольный, тупоугольный; равносторонний, равнобедренный, разносторонний.

Изменение положения плоских фигур на плоскости.

Элементы алгебры ( 10 ч)

Выражения с двумя переменными. Нахождение значений выражений вида а ± b; а ∙ b; а : b.

Неравенства с одной переменной. Решение подбором неравенств с одной переменной вида: а ± х < b; а ± х > b.

Решение уравнений вида: х ± а = с ± b; а − х = с ± b; х ± a = с ∙ b; а − х = с : b; х : а = с ± b; а ∙ х = с ± b; а : х = с ∙ b и т.д.

Прямая пропорциональность. Обратная пропорциональность.

Использование уравнений при решении текстовых задач.

Элементы стохастики ( 10 ч)

Решение комбинаторных задач с помощью таблиц и графов. Упорядоченный перебор вариантов. Дерево выбора.

Случайные эксперименты. Запись результатов случайного эксперимента. Понятие о частоте события в серии одинаковых случайных экспериментов.

Понятия «чаще», «реже», «невозможно», «возможно», «случайно».

Первоначальное представление о сборе и обработке статистической информации.

Чтение информации, заданной с помощью линейных и столбчатых диаграмм, таблиц, графов. Построение простейших линейных диаграмм по содержащейся в таблице информации.

Круговые диаграммы.

Занимательные и нестандартные задачи (10 ч)

Уникурсальные кривые.

Логические задачи. Решение логических задач с помощью таблиц и графов.

Множество, элемент множества, подмножество, пересечение множеств, объединение множеств, высказывания с кванторами общности и существования.

Затруднительные положения: задачи на переправы, переливания, взвешивания.

Задачи на принцип Дирихле.

Итоговое повторение (7 ч)




4 класс (136 ч – 4 часа в неделю)


Числа и операции над ними ( 52 ч)

Дробные числа.

Дроби. Сравнение дробей. Нахождение части числа. Нахождение числа по его части.

Какую часть одно число составляет от другого.

Сложение дробей с одинаковыми знаменателями. Вычитание дробей с одинаковыми знаменателями.

Числа от 1 до 1000000.

Числа от 1 до 1000000. Чтение и запись чисел. Класс единиц и класс тысяч. I, II, III разряды в классе единиц и в классе тысяч. Представление числа в виде суммы его разрядных слагаемых. Сравнение чисел.

Числа от 1 до 1000000000.

Устная и письменная нумерация многозначных чисел.

Числовой луч. Движение по числовому лучу. Расположение на числовом луче точек с заданными координатами, определение координат заданных точек.

Точные и приближенные значения величин. Округление чисел, использование округления в практической деятельности.

Сложение и вычитание чисел.

Операции сложения и вычитания над числами в пределах от 1 до 1 000 000. Приёмы рациональных вычислений.

Умножение и деление чисел.

Умножение и деление чисел на 10, 100, 1000.

Умножение и деление чисел, оканчивающихся нулями. Устное умножение и деление чисел на однозначное число в случаях, сводимых к действиям в пределах 100.

Письменное умножение и деление на однозначное число.

Умножение и деление на двузначное и трёхзначное число.

Величины и их измерение ( 10 ч)

Оценка площади. Приближённое вычисление площадей. Площади составных фигур. Новые единицы площади: мм², км², гектар, ар (сотка). Площадь прямоугольного треугольника.

Работа, производительность труда, время работы.

Функциональные зависимости между группами величин: скорость, время, расстояние; цена, количество, стоимость; производительность труда, время работы, работа. Формулы, выражающие эти зависимости.

Текстовые задачи ( 27 ч)

Одновременное движение по числовому лучу. Встречное движение и движение в противоположном направлении. Движение вдогонку. Движение с отставанием. Задачи с альтернативным условием.

Элементы геометрии ( 10 ч)

Изменение положения объемных фигур в пространстве.

Объёмные фигуры, составленные из кубов и параллелепипедов.

Прямоугольная система координат на плоскости. Соответствие между точками на плоскости и упорядоченными парами чисел.

Элементы алгебры ( 10 ч)

Вычисление значений числовых выражений, содержащих до шести действий (со скобками и без них), на основе знания правила о порядке выполнения действий и знания свойств арифметических действий. Использование уравнений при решении текстовых задач.

Элементы стохастики ( 10 ч)

Сбор и обработка статистической информации о явлениях окружающей действительности. Опросы общественного мнения как сбор и обработка статистической информации.

Понятие о вероятности случайного события.

Стохастические игры. Справедливые и несправедливые игры.

Понятие среднего арифметического нескольких чисел. Задачи на нахождение среднего арифметического.

Круговые диаграммы. Чтение информации, содержащейся в круговой диаграмме.

Занимательные и нестандартные задачи (10 ч)

Принцип Дирихле.

Математические игры.

Итоговое повторение ( 7ч )

















Критерии и нормы оценки достижения предметных результатов учащихся


На основании Федерального компонента государственного образовательного стандарта, методического письма МОиН РФ "Контроль и оценка результатов обучения в начальной школе" (№ 1561/14-15, от 19.11.98 г.), концептуальных основ построения образовательных программ начального общего образования, выделяются следующие виды контроля результатов обучения:

- текущий контроль;

- тематический контроль;

- итоговый контроль.

Письменная проверка знаний, умений и навыков

В основе данного оценивания лежат следующие показатели: правильность выполнения и объем выполненного задания.

Ошибки:

- незнание или неправильное применение свойств, правил, алгоритмов, существующих зависимостей, лежащих в основе выполнения задания или используемых в ходе его выполнения;

- неправильный выбор действий, операций;

- неверные вычисления в случае, когда цель задания – проверка вычислительных умений и навыков;

- пропуск части математических выкладок, действий, операций, существенно влияющих на получение правильного ответа;

- несоответствие пояснительного текста, ответа задания, наименования величин выполненным действиям и полученным результатам;

- несоответствие выполненных измерений и геометрических построений заданным параметрам.

Недочеты:

- неправильное списывание данных (чисел, знаков, обозначений, величин);

- ошибки в записях математических терминов, символов при оформлении математических выкладок;

- отсутствие ответа к заданию или ошибки в записи ответа.

Снижение отметки за общее впечатление от работы допускается в случаях, указанных выше.

При оценке работ, включающих в себя проверку вычислительных навыков, ставятся следующие оценки:

- оценка «5» ставится, если работа выполнена безошибочно;

- оценка «4» ставится, если в работе допущены 1-2 ошибки и 1-2 недочета;

- оценка «3» ставится, если в работе допущены 3-4 ошибки и 1-2 недочета;

- оценка «2» ставится, если в работе допущены 5 и более ошибок.

При оценке работ, состоящих только из задач:

- оценка «5» ставится, если задачи решены без ошибок;

- оценка «4» ставится, если допущены 1-2 ошибки;

- оценка «3» ставится, если допущены 1-2 ошибки и 3-4 недочета;

- оценка «2» ставится, если допущены 3 и более ошибок.

При оценке комбинированных работ:

- оценка «5» ставится, если работа выполнена безошибочно;

- оценка «4» ставится, если в работе допущены 1-2 ошибки и 1-2 недочета, при этом ошибки не должно быть в задаче;

- оценка «3» ставится, если в работе допущены 3-4 ошибки и 3-4 недочета;

- оценка «2» ставится, если в работе допущены 5 ошибок.

При оценке работ, включающих в себя решение выражений на порядок действий:

- оценка «5» ставится, если работа выполнена безошибочно;

- оценка «4» ставится, если в работе допущены 1-2 ошибки;

- оценка «3» ставится, если в работе допущены 3 ошибки;

- оценка «2» ставится, если в работе допущены 4 и более ошибок.

При оценке работ, включающих в себя решение уравнений:

- считается ошибкой неверный ход решения, неправильно выполненное действие, а также, если не выполнена проверка;

- оценка «5» ставится, если работа выполнена безошибочно;

- оценка «4» ставится, если в работе допущены 1-2 ошибки;

- оценка «3» ставится, если в работе допущены 3 ошибки;

- оценка «2» ставится, если в работе допущены 4 и более ошибок.

При оценке заданий, связанных с геометрическим материалом:

- считается ошибкой, если ученик неверно построил геометрическую фигуру, если не соблюдал размеры, неверно перевел одни единицы измерения в другие, если не умеет использовать чертежный инструмент для измерения или построения геометрических фигур;

- оценка «5» ставится, если работа выполнена безошибочно;

- оценка «4» ставится, если в работе допущены 1-2 ошибки;

- оценка «3» ставится, если в работе допущены 3 ошибки;

- оценка «2» ставится, если в работе допущены 4 и более ошибок.

Примечание: за грамматические ошибки, допущенные в работе, оценка по математике не снижается.

Оценка письменной работы по математике в классах коррекционно-развивающего обучения за курс начальной школы

В основе данного оценивания лежат следующие показатели:

- положительная динамика усвоения знаний;

- правильность выполнения заданий и их объем.

Ошибки:

- незнание или неправильное применение свойств, правил, алгоритмов, существующих - зависимостей, лежащих в основе выполнения задания или используемых в ходе его выполнения;

- неправильный выбор действий;

- неверные вычисления в случае, когда цель задания – проверка вычислительных умений и навыков;

Недочеты:

- неправильное осмысление данных (чисел, знаков, обозначений, величин);

- ошибки в записях математических терминов, символов при оформлении математических выкладок;

- нарушение логического строя предложений в пояснениях к задачам, несоответствие пояснительного текста, или ответа задания, или наименования величин выполненным - - действиям и полученным результатам;

- наличие или отсутствие действий при правильном ответе;

- отсутствие ответа к заданию или ошибки в записи ответа.

Снижение отметки за общее впечатление от работы не допускается.

Оценивание работы по объему и правильности выполнения:

-оценка «5» ставится в том случае, если учащийся выполнил

4 задания (до задания со *);

- оценка «4» ставится в том случае, если учащийся выполнил задачу и 1 задание из остальных предложенных либо допущено 1-3 ошибки;

- оценка «3» ставится в том случае, если учащийся выполнил задачу и приступил к выполнению какого-либо еще задания или если есть положительная динамика по сравнению с предыдущей контрольной работой либо допущено 4-6 ошибок;

- оценка «2» ставится, если в работе допущено 7 и более ошибок.

Оценка устных ответов

В основу оценивание устного ответа учащихся положены следующие показатели: правильность, обоснованность, самостоятельность, полнота.

Ошибки:

- неправильный ответ на поставленный вопрос;

- неумение ответить на поставленный вопрос или выполнить задание без помощи учителя;

- при правильном выполнении задания дать соответствующие объяснения.

Недочеты:

- неточный или неполный ответ на поставленный вопрос;

-при правильном ответе неумение самостоятельно и полно обосновать и проиллюстрировать его;

- медленный темп выполнения задания, не являющийся индивидуальной особенностью школьника;

- неправильное произношение математических терминов.

Оценка «5» ставится ученику, если он:

- при ответе обнаруживает осознанное усвоение изученного материала и умеет им самостоятельно пользоваться;

- производит вычисления правильно и достаточно быстро;

- умеет самостоятельно решить задачу (составить план, решить, объяснить ход решения и точно сформулировать ответ на вопрос задачи);

- правильно выполняет практические задания.

Оценка «4» ставится ученику, если его ответ в основном соответствует требованиям, установленным для оценки «5», но:

- ученик допускает отдельные неточности в формулировках;

- не всегда использует рациональные приемы вычислений;

При этом ученик легко исправляет эти недочеты сам при указании на них учителем.

Оценка «3» ставится ученику, если он показывает осознанное усвоение более половины изученных вопросов, допускает ошибки в вычислениях и решении задач, но исправляет их с помощью учителя.

Оценка «2» ставится ученику, если он обнаруживает незнание большей части программного материала, не справляется с решением задач и вычислениями даже с помощью учителя.

Итоговая оценка знаний, умений и навыков.

За учебную четверть и за год знания, предметные результаты по математике в 1-4 классах оцениваются одним баллом.

Основанием для выставления итоговой оценки знаний служат результаты наблюдений учителя за повседневной работой учеников, устного опроса, текущих и итоговых контрольных работ. Однако последним оценкам предается наибольшее значение.

При выставлении итоговой оценки учитывается как уровень теоретических знаний ученика, так и овладение им практическими умениями и навыками. Однако ученику не может быть выставлена положительная итоговая оценка по математике, если все или большинство его текущих обучающих и контрольных работ, а также итоговая контрольная работа оценены как неудовлетворительные, хотя его устные ответы оцениваются положительно.

Особенности организации контроля по математике

Текущий контроль по математике можно осуществлять как в письменной, так и в устной форме. Письменные работы для текущего контроля рекомендуется проводить не реже одного раза в неделю в форме самостоятельной работы или математического диктанта. Желательно, чтобы работы для текущего контроля состояли из нескольких однотипных заданий, с помощью которых осуществляется всесторонняя проверка только одного определенного умения (например, умения сравнивать натуральные числа, умение находить площадь прямоугольника и др.)

Тематический контроль по математике в начальной школе проводится в основном в письменной форме. Для тематических проверок выбираются узловые вопросы программы: приемы устных вычислений, действий с многозначными числами, измерение величин и др. Среди тематических проверочных работ особое место занимают работы, с помощью которых проверяются знания табличных случаев сложения, вычитания и деления. Для обеспечения самостоятельности учащихся подбираются несколько вариантов работы, каждый из которых содержит 30 примеров (соответственно по 15 на сложение и вычитание или умножение и деление). На выполнение работы отводится 5-6 минут урока.

Итоговый контроль по математике проводится в форме контрольных работ комбинированного характера (они содержат арифметические задачи, примеры, задания по геометрии и др.). В этих работах сначала отдельно оценивается выполнение задач, заданий по геометрии, а затем выводится итоговая отметка за всю работу.

При этом итоговая отметка не выставляется как средний балл, а определяется с учетом тех видов заданий, которые для данной работы являются основными.

Нормы оценок за итоговые контрольные работы соответствуют общим требованиям, указанным в данном документе.


Оценка тестов

Тестовая работа проверки позволяет существенно увеличить объем контролируемого материала по сравнению с традиционными формами контрольной работы и тем самым создает предпосылки для повышения информативности и объективности результатов. Тест включает задания средней трудности.

Проверка может проводиться как по всему тесту, так и отдельно по разделам. Выполненная работа оценивается отметкам отметками «зачет» или «незачет». Считается, что ученик обнаружил достаточную базовую подготовку («зачет»), если он дал не менее 75% правильных ответов. Как один из вариантов оценивания:

- «высокий» - все предложенные задания выполнены правильно;

- «средний» - все задания с незначительными погрешностями;

- «низкий» - выполнены отдельные задания.

Обучающихся следует подготовить заранее к выполнению работы. Для этого выделить 10 – 15 минут в конце одного из предшествующих уроков. Рекомендуется записать на доске 1 – 2 задания, аналогичные включенным в тест и выполнить их вместе с учащимися.

Отметка за тест

Базовый уровень

0 – 60%

60 – 77%

77 – 90%

90 – 100%

менее 17 баллов

18 - 22 баллов

23 - 26 баллов

27 - 30 баллов

«2»

«3»

«4»

«5»

















Выберите курс повышения квалификации со скидкой 50%:

Краткое описание документа:

 

Составлена рабочая программа учебного предмета "Математика". Срок реализации программы 4 года. Программа составлена на основе авторской программы начального общего образования Образовательной системы "Школа 2100" (Авторы: Т.Е.Демидова, С.А. Козлова, А.П.Тонких). Имеется пояснительная записка, общая характеристика и содержание учебного предмета. В программе отражены личностные, метапредметные и предметные результаты освоения предмета "Математика". Указаны критерии и нормы достижения предметных результатов учащихся по учебному предмету "Математика". Данный курс создан на основе личностно-ориентированных принципов.

 

Автор
Дата добавления 31.05.2015
Раздел Начальные классы
Подраздел Другие методич. материалы
Просмотров242
Номер материала 551914
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх