- 06.04.2020
- 980
- 4
Распознаватели. Задача разбора
Общая схема распознавателя
Для каждого языка программирования (как, наверное, и для многих других языков) важно не только уметь построить текст программы на этом языке, но и определить принадлежность имеющегося текста к данному языку (т.е. не содержит ли текст ошибок). Именно эту задачу решают компиляторы в числе прочих задач (компилятор должен не только распознать исходную программу, но и построить эквивалентную ей результирующую программу). В отношении исходной программы компилятор выступает как распознаватель, а человек, создавший программу на некотором языке, выступает в роли генератора цепочек этого языка.
Распознаватель (или разборщик) – это специальный алгоритм, который позволяет определить принадлежность цепочки символов некоторому языку. Задача распознавателя заключается в том, чтобы на основании исходной цепочки дать ответ, принадлежит ли она заданному языку или нет. Распознаватели, как было сказано выше, представляют собой один из способов определения языка.
В общем виде распознаватель можно отобразить в виде условной схемы, представленной на рис. 2.4.
Рис. 2.4. Условная схема распознавателя
Следует подчеркнуть, что представленный рисунок — всего лишь условная схема, отображающая работу алгоритма распознавателя. Ни в коем случае не стоит искать подобного устройства в составе компьютера. Распознаватель, являющийся частью компилятора, представляет собой часть программного обеспечения компьютера.
Как видно из рисунка, распознаватель состоит из следующих основных компонентов:
· ленты, содержащей исходную цепочку входных символов, и считывающей головки, обозревающей очередной символ в этой цепочке;
· устройства управления (УУ), которое координирует работу распознавателя, имеет некоторый набор состояний и конечную память (для хранения своего состояния и некоторой промежуточной информации);
· внешней (рабочей) памяти, которая может хранить некоторую информацию в процессе работы распознавателя и в отличие от памяти УУ может иметь неограниченный объем.
Распознаватель работает с символами своего алфавита — алфавита распознавателя. Алфавит распознавателя конечен. Он включает в себя все допустимые символы входных цепочек, а также некоторый дополнительный алфавит символов, которые могут обрабатываться УУ и храниться в рабочей памяти распознавателя.
В процессе своей работы распознаватель может выполнять некоторые элементарные операции, такие как чтение очередного символа из входной цепочки, сдвиг входной цепочки на заданное количество символов (вправо или влево), доступ к рабочей памяти для чтения или записи информации, преобразование информации в памяти, изменение состояния УУ. То, какие конкретно операции должны выполняться в процессе работы распознавателя, определяется в УУ.
Вся работа распознавателя состоит из последовательности тактов. В начале каждого такта состояние распознавателя определяется его конфигурацией. В процессе работы конфигурация распознавателя меняется.
Конфигурация распознавателя определяется следующими параметрами:
· содержимое входной цепочки символов и положение считывающей головки в ней;
· состояние УУ;
· содержимое внешней памяти.
Для распознавателя всегда задается определенная конфигурация, которая считается начальной конфигурацией. В начальной конфигурации считывающая головка обозревает первый символ входной цепочки, У У находится в заданном начальном состоянии, а внешняя память либо пуста, либо содержит строго определенную информацию.
Кроме начального состояния для распознавателя задается одна или несколько конечных конфигураций. В конечной конфигурации считывающая головка, как правило, находится за концом исходной цепочки (часто для распознавателей вводят специальный символ, обозначающий конец входной цепочки).
Распознаватель допускает входную цепочку символов а, если, находясь в начальной конфигурации и получив на вход эту цепочку, он может проделать последовательность шагов, заканчивающуюся одной из его конечных конфигураций.
Формулировка «может проделать последовательность шагов» более точна, чем прямое указание «проделает последовательность шагов», так как для многих распознавателей при одной и той же входной цепочке символов из начальной конфигурации могут быть допустимы различные последовательности шагов, не все из которых ведут к конечной конфигурации.
Язык, определяемый распознавателем, — это множество всех цепочек, которые допускает распознаватель.
Далее будут рассмотрены конкретные типы распознавателей для различных типов языков. Но все, что было сказано здесь, относится ко всем без исключения типам распознавателей для всех типов языков.
Виды распознавателей
Распознаватели можно классифицировать в зависимости от вида составляющих их компонентов: считывающего устройства, устройства управления (УУ) и внешней памяти.
По видам считывающего устройства распознаватели могут быть двусторонние и односторонние.
Односторонние распознаватели допускают перемещение считывающей головки по ленте входных символов только в одном направлении. Поскольку все языки программирования подразумевают нотацию чтения исходной программы «слева направо», то так же работают и все распознаватели. Поэтому, когда говорят об односторонних распознавателях, то прежде всего имеют в виду левосторонние, которые читают исходную цепочку слева направо и не возвращаются назад к уже прочитанной части цепочки.
Двусторонние распознаватели допускают, что считывающая головка может перемещаться относительно ленты входных символов в обоих направлениях: как вперед, от начала ленты к концу, так и назад, возвращаясь к уже прочитанным символам.
По видам устройства управления распознаватели бывают детерминированные и недетерминированные.
Распознаватель называется детерминированным в том случае, если для каждой допустимой конфигурации распознавателя, которая возникла на некотором шаге его работы, существует единственно возможная конфигурация, в которую распознаватель перейдет на следующем шаге работы.
В противном случае распознаватель называется недетерминированным. Недетерминированный распознаватель может иметь такую допустимую конфигурацию, для которой существует некоторое конечное множество конфигураций, возможных на следующем шаге работы. Достаточно иметь хотя бы одну такую конфигурацию, чтобы распознаватель был недетерминированным.
По видам внешней памяти распознаватели бывают следующих типов:
· распознаватели без внешней памяти;
· распознаватели с ограниченной внешней памятью;
· распознаватели с неограниченной внешней памятью.
У распознавателей без внешней памяти эта память полностью отсутствует. В процессе их работы используется только конечная память устройства управления, доступ к внешней памяти не выполняется.
Для распознавателей с ограниченной внешней памятью размер внешней памяти ограничен в зависимости от длины исходной цепочки символов. Эти ограничения могут налагаться некоторой зависимостью объема памяти от длины цепочки — линейной, полиномиальной, экспоненциальной и т. д. Кроме того, для таких распознавателей может быть указан способ организации внешней памяти — стек, очередь, список и т. п.
Распознаватели с неограниченной внешней памятью предполагают, что для их работы может потребоваться внешняя память неограниченного объема (как правило, вне зависимости от длины входной цепочки). У таких распознавателей предполагается память с произвольным методом доступа.
Вместе эти три составляющих позволяют организовать общую классификацию распознавателей. Например, в этой классификации возможен такой тип: «двусторонний недетерминированный распознаватель с линейно ограниченной стековой памятью».
Чем выше в классификации стоит распознаватель, тем сложнее создавать алгоритм, обеспечивающий его работу. Разрабатывать двусторонние распознаватели сложнее, чем односторонние. Можно заметить, что недетерминированные распознаватели по сложности выше детерминированных. Зависимость затрат на создание алгоритма от типа внешней памяти также очевидна.
Классификация распознавателей по типам языков
Как было показано в предыдущей главе, классификация распознавателей (вид входящих в состав распознавателя компонентов) определяет сложность алгоритма работы распознавателя. Но сложность распознавателя также напрямую связана с типом языка, входные цепочки которого может принимать (допускать) распознаватель.
Выше было определено четыре основных типа языков. Доказано, что для каждого из этих типов языков существует свой тип распознавателя с определенным составом компонентов и, следовательно, с заданной сложностью алгоритма работы.
Для языков с фразовой структурой (тип 0) необходим распознаватель, равномощный машине Тьюринга — недетерминированный двусторонний автомат, имеющий неограниченную внешнюю память. Поэтому для языков данного типа нельзя гарантировать, что за ограниченное время на ограниченных вычислительных ресурсах распознаватель завершит работу и примет решение о том, принадлежит или не принадлежит входная цепочка заданному языку. Отсюда можно заключить, что практического применения языки с фразовой структурой не имеют (и не будут иметь), а потому далее они не рассматриваются.
Для контекстно-зависимых языков (тип 1) распознавателями являются двусторонние недетерминированные автоматы с линейно ограниченной внешней памятью. Алгоритм работы такого автомата в общем случае имеет экспоненциальную сложность — количество шагов (тактов), необходимых автомату для распознавания входной цепочки, экспоненциально зависит от длины этой цепочки. Следовательно, и время, необходимое на разбор входной цепочки по заданному алгоритму, экспоненциально зависит от длины входной цепочки символов-
Такой алгоритм распознавателя уже может быть реализован в программном обеспечении компьютера — зная длину входной цепочки, всегда можно сказать, за какое максимально возможное время будет принято решение о принадлежности цепочки данному языку и какие вычислительные ресурсы для этого потребуются. Однако экспоненциальная зависимость времени разбора от длины цепочки существенно ограничивает применение распознавателей для контекстно-зависимых языков. Как правило, такие распознаватели применяются для автоматизированного перевода и анализа текстов на естественных языках, когда временные ограничения на разбор текста несущественны (следует также напомнить, что, поскольку естественные языки более сложны, чем контекстно-зависимый тип, то после такой обработки часто требуется вмешательство человека).
В компиляторах контекстно-зависимые распознаватели не применяются, поскольку скорость работы компилятора имеет существенное значение, а синтаксический разбор текста программы можно выполнять в рамках более простого, контекстно-свободного типа языков. Поэтому в рамках этого курса контекстно-зависимые языки также не рассматриваются.
Для контекстно-свободных языков (тип 2) распознавателями являются односторонние недетерминированные автоматы с магазинной (стековой) внешней памятью — МП-автоматы. При простейшей реализации алгоритма работы такого автомата он имеет экспоненциальную сложность, однако путем некоторых усовершенствований алгоритма можно добиться полиномиальной (кубической) зависимости времени, необходимого на разбор входной цепочки, от длины этой цепочки. Следовательно, можно говорить о полиномиальной сложности распознавателя для КС-языков.
Среди всех КС-языков можно выделить класс детерминированных КС-языков, распознавателями для которых являются детерминированные автоматы с магазинной (стековой) внешней памятью — ДМП-автоматы. Эти языки обладают свойством однозначности — доказано, что для любого детерминированного КС-языка всегда можно построить однозначную грамматику. Кроме того, для таких языков существует алгоритм работы распознавателя с квадратичной сложностью. Поскольку эти языки являются однозначными, именно они представляют наибольший интерес для построения компиляторов.
Более того, среди всех детерминированных КС-языков существуют такие классы языков, для которых возможно построить линейный распознаватель — распознаватель, у которого время принятия решения о принадлежности цепочки языку имеет линейную зависимость от длины цепочки. Синтаксические конструкции практически всех существующих языков программирования могут быть отнесены к одному из таких классов языков. Это обстоятельство очень важно для разработки современных быстродействующих компиляторов. Поэтому в главе, посвященной КС-языкам, в первую очередь будет уделено внимание именно таким классам этих языков.
Тем не менее следует помнить, что только синтаксические конструкции языков программирования допускают разбор с помощью распознавателей КС-языков Сами языки программирования, как уже было сказано, не могут быть полностью отнесены к типу КС-языков, поскольку предполагают некоторую контекстную зависимость в тексте исходной программы (например, такую, как необходимость предварительного описания переменных). Поэтому кроме синтаксического разбора практически все компиляторы предполагают дополнительный семантический анализ текста исходной программы. Этого можно было бы избежать, если построить компилятор на основе контекстно-зависимого распознавателя, но скорость работы такого компилятора была бы недопустима низка, поскольку время разбора в таком варианте будет экспоненциально зависеть от длины исходной программы. Комбинация из распознавателя КС-языка и дополнительного семантического анализатора является более эффективной с точки зрения скорости разбора исходной программы.
Для регулярных языков (тип 3) распознавателями являются детерминированные автоматы без внешней памяти — конечные автоматы (КА). Это очень простой тип распознавателя, который всегда предполагает линейную зависимость времени на разбор входной цепочки от ее длины. Кроме того, конечные автоматы имеют важную особенность: любой недетерминированный КА всегда может быть преобразован в детерминированный. Это обстоятельство существенно упрощает разработку программного обеспечения, обеспечивающего функционирование распознавателя.
Простота и высокая скорость работы распознавателей определяют широкую область применения регулярных языков.
В компиляторах распознаватели на основе регулярных языков используются для лексического анализа текста исходной программы — выделения в нем простейших конструкций языка, таких как идентификаторы, строки, константы и т. п. Это позволяет существенно сократить объем исходной информации и упрощает синтаксический разбор программы. Более подробно взаимодействие лексического и синтаксического анализаторов текста программы рассмотрено дальше, в главе, посвященной структуре компилятора. На основе распознавателей регулярных языков функционируют ассемблеры — компиляторы с языков ассемблера (мнемокода) в язык машинных команд.
Кроме компиляторов регулярные языки находят применение еще во многих областях, связанных с разработкой программного обеспечения вычислительных систем. На их основе функционируют многие командные процессоры как в системном, так и в прикладном программном обеспечении. Для регулярных языков существуют развитые, математически обоснованные механизмы, которые позволяют облегчить создание распознавателей. Они положены в основу существующих разнообразных программных средств, которые позволяют автоматизировать этот процесс.
Задача разбора (постановка задачи)
Грамматики и распознаватели — два независимых метода, которые реально могут быть использованы для определения какого-либо языка. Однако при разработке компилятора для некоторого языка программирования возникает задача, которая требует связать между собой эти методы задания языков.
Разработчики компилятора всегда имеют дело с уже определенным языком программирования. Грамматика для синтаксических конструкций этого языка известна. Она, как правило, четко описана в стандарте языка, и хотя форма описания может быть произвольной, ее всегда можно преобразовать к требуемому виду (например, к форме Бэкуса—Наура или к форме описания с использованием метасимволов). Задача разработчиков заключается в том, чтобы построить распознаватель для заданного языка, который затем будет основой синтаксического анализатора в компиляторе.
Таким образом, задача разбора в общем виде заключается в следующем: на основе имеющейся грамматики некоторого языка построить распознаватель для этого языка.
Задача разбора в общем виде может быть решена не для всех типов языков. Но как было сказано выше, разработчиков компиляторов интересуют, прежде всего, контекстно-свободные и регулярные языки. Для данных типов языков доказано, что задача разбора для них разрешима. Более того, для них найдены формальные методы ее решения. Описанию и обоснованию именно методов решения задачи разбора и будет посвящена большая часть материала последующих глав.
Поскольку языки программирования не являются чисто формальными языками и несут в себе некоторый смысл (семантику), то задача разбора для создания реальных компиляторов понимается несколько шире, чем она формулируется для чисто формальных языков. Компилятор должен не просто дать ответ, принадлежит или нет входная цепочка символов заданному языку, но и определить ее смысловую нагрузку. Для этого необходимо выявить те правила грамматики, па основании которых цепочка была построена. Фактически работа распознавателей в составе компиляторов сводится к построению в том или ином виде дерева разбора входной цепочки. Затем уже это дерево разбора используется компилятором для синтеза результирующего кода.
Кроме того, если входная цепочка символов не принадлежит заданному языку — исходная программа содержит ошибку, — разработчику программы не интересно просто узнать сам факт наличия ошибки. В данном случае задача разбора также расширяется: распознаватель в составе компилятора должен не только установить факт присутствия ошибки во входной программе, но и по возможности определить тип ошибки и то место в цепочке символов, где она встречается.
Как отмечалось ранее, сложность распознавателей зависит от типа анализируемых языков. Так наиболее простые распознаватели на основе детерминированных автоматов без внешней памяти (конечных автоматов), могут быть использованы для анализа регулярных КС-языков (типа 3).
Конечные автоматы и регулярные грамматики важны еще и потому, что они используются при построении лексических анализаторов.
Автоматные грамматики и конечные автоматы
Соглашение: в дальнейшем, если особо не оговорено, под регулярной грамматикой будем понимать леволинейную грамматику.
Напомним, что грамматика G = (VT, VN, P, S) называется леволинейной, если каждое правило из Р имеет вид A ® Bt либо A ® t, где A, B Î VN, t Î VT.
Соглашение: предположим, что анализируемая цепочка заканчивается специальным символом ^ - признаком конца цепочки.
Для леволинейных грамматик существует алгоритм определения того, принадлежит ли анализируемая цепочка языку, порождаемому этой грамматикой (алгоритм разбора):
(1) первый символ исходной цепочки a1a2...an^ заменяем нетерминалом A, для которого в грамматике есть правило вывода A ® a1 (другими словами, производим "свертку" терминала a1 к нетерминалу A)
(2) затем многократно (до тех пор, пока не считаем признак конца цепочки) выполняем следующие шаги: полученный на предыдущем шаге нетерминал A и расположенный непосредственно справа от него очередной терминал ai исходной цепочки заменяем нетерминалом B, для которого в грамматике есть правило вывода B ® Aai (i = 2, 3,.., n);
Это эквивалентно построению дерева разбора методом "снизу-вверх": на каждом шаге алгоритма строим один из уровней в дереве разбора, "поднимаясь" от листьев к корню.
При работе этого алгоритма возможны следующие ситуации:
(1) прочитана вся цепочка; на каждом шаге находилась единственная нужная "свертка"; на последнем шаге свертка произошла к символу S. Это означает, что исходная цепочка a1a2...an^ Î L(G).
(2) прочитана вся цепочка; на каждом шаге находилась единственная нужная "свертка"; на последнем шаге свертка произошла к символу, отличному от S. Это означает, что исходная цепочка a1a2...an^ Ï L(G).
(3) на некотором шаге не нашлось нужной свертки, т.е. для полученного на предыдущем шаге нетерминала A и расположенного непосредственно справа от него очередного терминала ai исходной цепочки не нашлось нетерминала B, для которого в грамматике было бы правило вывода B ® Aai. Это означает, что исходная цепочка a1a2...an^ Ï L(G).
(4) на некотором шаге работы алгоритма оказалось, что есть более одной подходящей свертки, т.е. в грамматике разные нетерминалы имеют правила вывода с одинаковыми правыми частями, и поэтому непонятно, к какому из них производить свертку. Это говорит о недетерминированности разбора. Анализ этой ситуации будет дан ниже.
Допустим, что разбор на каждом шаге детерминированный.
Для того, чтобы быстрее находить правило с подходящей правой частью, зафиксируем все возможные свертки (это определяется только грамматикой и не зависит от вида анализируемой цепочки).
Это можно сделать в виде таблицы, строки которой помечены нетерминальными символами грамматики, столбцы - терминальными. Значение каждого элемента таблицы - это нетерминальный символ, к которому можно свернуть пару "нетерминал-терминал", которыми помечены соответствующие строка и столбец.
Например, для грамматики G = ({a, b, ^}, {S, A, B, C}, P, S), такая таблица будет выглядеть следующим образом:
P: S ® C^ С ® Ab | Ba A ® a | Ca B ® b | Cb |
|
a |
b |
^ |
C |
A |
B |
S |
A |
- |
C |
- |
B |
C |
- |
- |
S |
- |
- |
- |
Знак "-" ставится в том случае, если для пары "терминал-нетерминал" свертки нет.
Но чаще информацию о возможных свертках представляют в виде диаграммы состояний (ДС) - неупорядоченного ориентированного помеченного графа, который строится следующим образом:
(1) строят вершины графа, помеченные нетерминалами грамматики (для каждого нетерминала - одну вершину), и еще одну вершину, помеченную символом, отличным от нетерминальных (например, H). Эти вершины будем называть состояниями. H - начальное состояние.
(2) соединяем эти состояния дугами по следующим правилам:
a) для каждого правила грамматики вида W ® t соединяем дугой состояния H и W (от H к W) и помечаем дугу символом t;
б) для каждого правила W ® Vt соединяем дугой состояния V и W (от V к W) и помечаем дугу символом t;
Диаграмма состояний для грамматики G (см. пример выше)
Настоящий материал опубликован пользователем Радзевич Виталий Николаевич. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Удалить материалучитель информатики
Файл будет скачан в формате:
Материал разработан автором:
Иголкина Елена Константиновна
ПЕДАГОГ-БИБЛИОТЕКАРЬ
Об авторе
Морфемный разбор слова – это вид лингвистического анализа слова, во время которого определяется его состав. Простыми словами – это разбор, который помогает понять, из каких частей состоит слово (корень, суффиксы, приставки, окончания). Систематический анализ позволяет повышать уровень грамотности письма. Это происходит благодаря выработке навыка осмысления каждого слова и выбора единственного правильного варианта написания.
Курс повышения квалификации
Курс повышения квалификации
72 ч. — 180 ч.
Курс повышения квалификации
36 ч. — 180 ч.
Курс профессиональной переподготовки
500/1000 ч.
Еще материалы по этой теме
Смотреть
Рабочие листы
к вашим урокам
Скачать
7 237 008 материалов в базе
Вам будут доступны для скачивания все 215 706 материалов из нашего маркетплейса.
Мини-курс
3 ч.
Мини-курс
2 ч.
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.