519179
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 1.410 руб.;
- курсы повышения квалификации от 430 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 90%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до конца апреля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

ИнфоурокМатематикаТестыРазноуровневые карточки 6 класс

Разноуровневые карточки 6 класс

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Приложения


Приложение 1.


НОД и НОК натуральных чисел.

Приложение 2.


Алгоритм Евклида.

Алгоритм Евклида – это очень простой и эффективный способ нахождения НОД.

Алгоритм Евклида с вычитанием. Пусть даны два числа. Большее из них заменим разностью этих чисел. Этот процесс повторяется до тех пор, пока не останется одно ненулевое число. Это и будет НОД исходных чисел. Пример: НОД(420;150) = НОД(270;150) = НОД(120;150) = НОД(120;30) = НОД(90;30) = НОД(60;30) = НОД(30;30) = 30


Алгоритм Евклида с делением. Пусть даны два числа. Большее из них заменим остатком от деления на меньшее. Этот процесс повторяется до тех пор, пока не останется одно ненулевое число. Это и будет НОД исходных чисел. Пример: даны числа 420 и150;

420: 150 = 2(ост.120);

150: 120 = 1(ост.30);

120: 30 = 4(ост. 0);

НОД(420;150) – 30 (14; 11)

Задачи. Найдите НОД, используя алгоритм Евклида: а) НОД(451;287); б) НОД(469459;519203); в) НОД(42628;33124)


Приложение 3.


Пример контрольной работы по теме «Делимость чисел»

№1. Разложите на простые множители числа: а) 870; б) 792.

№2. Найдите наибольший общий делитель и наименьшее общее кратное чисел: а) 27 и 36; б) 26 и 33.

№3. Составьте из цифр 0, 1, 3, 6 пару трехзначных простых чисел (цифры в одном числе не должны повторяться). Ответ обоснуйте.

№4. Найдите значение выражения и выпишите все делители этого числа:

№5.Замените звездочки цифрами так, чтобы число *32* делилось на 30. Укажите все возможные решения.(3;15)


Приложение 4.


Примеры разноуровневых задач по теме «Делимость чисел»


4.1 Делители и кратные.


1уровень.

1. Проверьте, что: а) число 14 является делителем числа 518; б) число 1024 кратно числу 32.

2. Среди данных чисел 4, 6, 24, 30, 40, 120 выберите:

а) те, которые делятся на 4;

б) те, на которые делится число 72;

в) делители 90;

г) кратные 24.

3. Найдите все значения х, которые кратны 15 и удовлетворяют неравенству х < 75.


2 уровень.

1. Назовите :

а) все делители числа 16;

б) три числа, кратных 16

2. Среди данных чисел 5, 7, 35, 105, 150, 175 выберите:

а) делители 300;

б) кратные 7;

в) числа, не являющиеся делителями 175;

г) числа, не кратные 5.

3. Найдите все числа, кратные 20 и составляющие менее 345% этого числа.


3 уровень.

1. даны числа 13 и 3965.

а) Какое из двух чисел является делителем другого? Найдите еще три делителя этого числа.

б) Какое из двух чисел кратно другому? Назовите еще три числа, кратных этому числу.

2. Среди данных чисел 7, 21, 28, 63, 147, 189 выберите:

а) числа, имеющие меньше шести делителей;

б) числа, кратные 21;

в) число, имеющее наибольшее количество делителей среди данных чисел;

г) число, имеющее наибольшее количество кратных среди данных чисел.

3. Найдите наибольшее трехзначное число, кратное 94.(3;4)


4.2 Простые и составные числа.

1 уровень.

1. Докажите, что числа 695 и 2907 являются составными.

2. Запишите все делители числа 66. подчеркните те из них, которые являются простыми числами.

3. Может ли разность двух простых чисел являться простым числом? Ответ подтвердите примером.(3;10)


2 уровень.

1.Замените звездочку цифрой так, чтобы полученное число было:

а) простым: 5*;

б) составным: 1*7.

2. Может ли разность двух составных чисел быть простым числом? Ответ подтвердите примером.

3. Выпишите все числа от 1 до 50, представляющие собой произведение двух различных простых чисел. (15;14)


3 уровень.

1. Представьте число 72 в виде:

а) суммы двух простых чисел;

б) в виде суммы трех различных составных чисел.

2. В семье шестеро детей, причем возраст каждого ребенка в годах выражается простым числом. Пятеро из них на 2, 6, 8, 12 и 14 лет старше самого младшего. Сколько лет старшему ребенку?

3. Число 17 – сумма четырех простых чисел. Найдите произведение этих чисел. (15;15)


Приложение 5

Сообщение о совершенных числах.

Пифагор(6 в. до н.э.) и его ученики изучали вопрос о делимости чисел. Число, равное сумме всех его делителей (без самого числа), они назвали совершенным. Например, число 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7+ 14) совершенные. Следующие совершенные числа 496, 8 128, 33 550 336. пифагорейцы знали только первые три совершенных числа. Четвертое – 8 128 – стало известно в 1в.н.э. пятое- 33 550 336 – было найдено в 15 в. К 1983г. Было известно уже 27 совершенных чисел. Но до сих пор ученые не знают, есть ли нечетные совершенные числа, есть ли самое большое совершенное число.


Приложение 6

Сообщение «Решето Эратосфена».

Интерес древних математиков к простым числам связан с тем, что любое число либо простое, либо может быть представлено в виде произведения простых чисел, т.е. простые числа – это как бы кирпичики, из которых строятся остальные числа. В ряду натуральных чисел простые встречаются неравномерно, в одних частях ряда их больше, в других меньше. Но чем дальше мы продвигаемся по числовому ряду, тем реже встречаются простые числа. Возникает вопрос: существует ли последнее простое число.

Древнегреческий математик Евклид доказал, что простых чисел бесконечно много.

Эратосфен, тоже греческий математик, для отыскания простых чисел придумал такой способ. Он записывал все числа от 1 до какого-то числа, а потом вычеркивал 1, которая не являлась ни простым, ни составным числом, затем вычеркивал через одно все числа , идущие после 2 (числа, кратные 2, т.е.4, 6, 8, 10 и тд.). первым оставшимся числом после 2 было 3. далее вычеркивались через два все числа, идущие после 3 (кратные 3, т.е. 6, 9, 12 и тд.). В конце концов оставались невычеркнутыми только простые числа.

Так как греки делали записи на покрытых воском табличках, а числа выкалывали иглой, то таблица в конце вычислений напоминала решето. Поэтому способ, предложенный Эратосфеном называют решетом Эратосфена, в этом решете «отсеиваются» простые числа от составных.

Приложение 7.

Вопросы для самостоятельной работы по теме «Простые и составные числа».

- Среди чисел 5, 1, 9, 6, 24, 17, 18, 7 выбрать те, которые имеют: а) много делителей; б) только два делителя; в) только один делитель?

- Как называется группа чисел, имеющая: а) много делителей; б) только два делителя; в) только один делитель?

- Сколько натуральных чисел можно отнести ни к простым, ни к составным? Почему?

- Почему среди простых чисел только одно четное число?

- Можно ли указать наибольшее и наименьшее простое число?

- Как называется запись 78=2*3*13?

- Любое ли число можно разложить на простые множители?

- Каким образом можно быстро установить является ли число простым?


Общая информация

Номер материала: ДБ-288528

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.