485072
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 70%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаКонспектыРазработка урока -конференции на тему "Правильный тетраэдр"

Разработка урока -конференции на тему "Правильный тетраэдр"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Урок – конференция «Правильный тетраэдр».

Цель:

Расширить, упрочить, углубить знания и обогатить кругозор учащихся, развить навыки самостоятельного пополнения знаний по теме «Правильные многогранники. Правильный тетраэдр».

Оборудование: Проектор. Модель правильного тетраэдра.

Девиз урока – конференции: «Вдохновение нужно в геометрии, как и в поэзии. А.С. Пушкин»

Ход конференции

Учитель:

Сегодня ученической конференцией никого не удивишь. В мою будничную работу прочно вошли уроки – конференции. Движущей силой её является дискуссия. Огромны обучающие и воспитывающие возможности ученической конференции. Я провожу конференции так, чтобы было по силам участие в ней каждому школьнику – старшекласснику, интересно не только группе докладчиков, но и всем участникам. Вокруг себя объединяю группу учащихся, которые могут самостоятельно решить вопросы, связанные с содержательной стороной конференции. Перед выбором темы урока –конференции, я всегда продумываю меру самостоятельности учащихся в решении вопросов, связанных с содержательной стороной. Таким образом, воспитываю у учащихся стремление добывать знания самостоятельно, творчески их перерабатывать. При этом старшеклассники знакомятся с тем богатством знаний, которое накопило человечество. Узкие рамки школьной программы не позволяют ответить на все вопросы, связанные с темой « Правильные многогранники». При подготовке конференции проявляется познавательная деятельность учащихся: индивидуальная, групповая, коллективная. Среди других форм учебно – воспитательного процесса конференция занимает особое место. Она как бы находится на стыке урочной и внеурочной деятельности учащихся. Я преследую ту цель, чтобы результаты конференции были зримыми. Ученический коллектив разбиваю на группы. Каждая группа получает задание по теме «Правильные многогранники. Правильный тетраэдр». Кроме того, есть и индивидуальные задания. Все учащиеся готовят модель правильного тетраэдра. Группы получают задания.

Примерное их содержание:

а) Красота и совершенство правильного тетраэдра.

б) Историческая справка о правильном тетраэдре.

в) Свойства правильного тетраэдра.

г) Место правильного тетраэдра в природе.

д) Решение задач, связанные с правильным тетраэдром.

Я считаю, что такую тему в школьной геометрии ждешь с нетерпением, ведь на уроке встречаешься с невероятно красивым материалом. Здесь не только открывается удивительный мир геометрических тел, которые обладают неповторимыми свойствами, но и интересные историко – философские концепции, оригинальные научные гипотезы. Я стремлюсь, чтобы урок – конференция стал своеобразным исследованием неожиданных сторон привычного «сухого» предмета – геометрии. Я думаю, что такой материал будет полезен каждому: и тому, кто готовил этот материал и тому, кто просто являлся слушателем.

Название правильных многогранников пришли из Греции. В дословном переводе с греческого «тетраэдр», «октаэдр», «гексаэдр», «додекаэдр», «икосаэдр» означают: «четырехгранник», «восьмигранник», «шестигранник», «двенадцатигранник», «двадцатигранник». Этим красивым телам посвящена 13-я книга «Начал» Евклида. Их ещё называют телами Платона, так как они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или «стихии». Тетраэдр символизировал огонь, так как его вершина устремлена вверх; икосаэдр – воду, так как он самый «обтекаемый»; куб – землю, как самый «устойчивый»; октаэдр – воздух, как самый «воздушный». Додекаэдр, пятый многогранник, воплощал в себе «все сущее», символизировал все мироздание, считался главным. Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля: вода=воздух: огонь. Атомы «стихий» настраивались Платоном в совершенных консонансах, как четыре струны лиры. Консонансом называется приятное созвучие. Надо сказать, что своеобразные музыкальные отношения в платоновых телах являются чисто умозрительными и не имеют под собой никакой геометрической основы. Этими отношениями не связаны ни число вершин платоновых тел, ни объ ёмы правильных многогранников, ни число рёбер ни число граней. В связи с этими телами уместно будет сказать, что первая система элементов, включавшая четыре элемента – землю, воду, воздух и огонь, - было канонизирована Аристотелем. Эти элементы оставались с четырьмя краеугольными камнями мироздания в течении многих веков. Вполне возможно отождествить их с известными нам четырьмя состояниями вещества – твердым, жидким, газообразным и плазменным. Важное место занимали правильные многогранники в системе гармоничного устройства мира И. Кеплера. Всё та же вера в гармонию, красоту и математически закономерное устройство мироздания привела И. Кеплера к мысли о том, что поскольку существует пять правильных многогранников, то им соответствуют только шесть планет. По его мнению, сферы планет связаны между собой вписанными в них платоновыми телами. Поскольку для каждого правильного многогранника центры вписанной и описанной сфер совпадают, то вся модель будет иметь единый центр, в котором будет находиться Солнце. Проделав огромную вычислительную работу, в 1596 году И. Кеплер в книге «Тайна мироздания» опубликовал результаты своего открытия. В 1597 году, используя правильные многогранники, вывел принцип, которому подчиняются формы и размеры орбит планет солнечной системы. В сферу орбиты Сатурна он вписывает куб, в куб-сферу Юпитера, в сферу Юпитера – тетраэдр, и так далее последовательно вписываются друг в друга сфера Марса – додекаэдр, сфера Земли -= икосаэдр, сфера Венеры – октаэдр, сфера Меркурия. Сегодня можно с уверенностью можно сказать, что расстояния между планетами не связаны ни с какими многогранниками. Впрочем, возможно, что без «Тайны мироздания», «Гармонии мира» И. Кеплера, правильных многогранников не было бы трех знаменитых законов И. Кеплера, которые играют важную роль в описании движения планет. Где ещё можно увидеть удивительные тела? В очень красивой книге немецкого биолога начала нашего века Э. Геккеля «Красота форм в природе» можно прочитать такие строки: «Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы». Создания природы, приведенные в этой книге, красивы и симметричны. Это неотделимое свойство природной гармонии. Но здесь мы видим и одноклеточные организма – феодарии, форма которых точно передает икосаэдр. Чем же вызвана такая природная геометризация? Может быть, тем , что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший объем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому организму преодолевать давление водной толщи. Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень – икосаэдр. Его геометрические свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам веществв имеют форму правильных многогранников. Так, куб передаёт форму кристаллов поваренной соли NaCl, монокристалл алюминиево-калиевых квасцов (KAlSO4)2 12H2O имеет форму октаэдра, кристалл сернистого колчедана FeS имеет форму додекаэдра, сурьменистый сернокислый натрий – тетраэдра, бор – икосаэдра. Правильные многогранники определяют форму кристаллических решёток некоторых химических веществ.

Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180 градусов.



Ученик 1. Как связаны между собой количество ребер, граней, вершин? Пусть f – число граней, k – число ребер, e – число вершин, n –число ребер каждой грани, m – число ребер, сходящихся к каждой вершине. Поскольку каждое ребро принадлежит двум граням, то nf=2k, а каждое ребро содержит две вершины то me=2k и по теореме Эйлера f+e-k=2. Из этих трех равенств находим



У правильного тетраэдра n=3, m=3;

f=4, k=6, e= 4.

Ученик 2. Элементы симметрии: правильный тетраэдр не имеет центра симметрии, правильный тетраэдр имеет три оси симметрии и шесть плоскостей симметрии.

hello_html_m5a184760.png

hello_html_m51a3c51e.pnghello_html_62cdc126.png







Вопросы для исследования:

1. Сколько осей симметрии?

2. Сколько плоскостей симметрии?

3. Почему правильных многограников только 5?

4. Вывести формулы для нахождения площади полной поверхности.

5. Вывести формулы для нахождения объёма.

6. Изготовить модель (задача №271)



Рефлексия. Правильные многогранники открыли нам попытки учёных приблизиться к тайне мировой гармонии и показали неотразимую привлекательность геометрии.







Общая информация

Номер материала: ДБ-121041

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Онлайн-конференция Идет регистрация