Логотип Инфоурока

Получите 30₽ за публикацию своей разработки в библиотеке «Инфоурок»

Добавить материал

и получить бесплатное свидетельство о размещении материала на сайте infourok.ru

Инфоурок Геометрия КонспектыРазработка урока математики "УРОК ОДНОЙ ЗАДАЧИ" для 9-го класса

Разработка урока математики "УРОК ОДНОЙ ЗАДАЧИ" для 9-го класса

Рогачева Татьяна Викторовна

учитель математики

ГБОУ средняя школа №103

г. Санкт-Петербург

Геометрия 9 класс

Урок одной задачи


Тема: Формулы для вычисления радиусов вписанной и описанной окружностей для правильных треугольников. Площадь треугольника. Решение задачи несколькими способами.

Цель: Направить работу учащихся на поисковую деятельность при решении задачи несколькими способами путем применения разнообразных свойств, определений, утверждений, теорем. Развивать самостоятельное, логическое и творческое мышление учащихся, умение сравнивать, обобщать, систематизировать, делать выводы и четко выражать свою мысль. Воспитывать познавательную активность, графическую культуру, коммуникативные навыки, чувство взаимоуважения.

Тип урока: Обобщение и систематизация знаний.

Задачи на урок:

Повторить основные понятия и формулы данной темы;

Решить одну задачу несколькими способами.



Эпиграф урока: «Обучение искусству решать задачи - это воспитание воли»

Д. Пойя.

План урока

I. Организационный момент (2 мин.)

II. Проверка домашнего задания (3 мин.)

III. Мотивация учебной деятельности (1 мин.)

IV. Актуализация опорных знаний. (10 мин.)

Технология «Мозговой штурм» (5 мин.)

V. Решение задачи (25 мин.)

Технология «Аквариум»

VI. Итог урока (3 мин.)

Рефлексия

VII. Домашнее задание (1 мин.)

Ход урока

I. Организационный момент.

II. Проверка домашнего задания.

На предыдущем уроке ученики класса были поделены на четыре дифференцированные группы. Перед группами поставлена задача: решить одну и ту же задачу, но разными способами. Необходимые консультации от учителя получили координаторы групп.

Перед уроком учитель еще раз проводит консультации с координаторами, чтобы разобрать непонятные вопросы.

III. Мотивация учебной деятельности.

Нужно нацелить учащихся на то, что есть задачи, которые можно решить двумя, тремя и более способами, но для этого необходимо иметь определенный теоретический запас знаний.

IV. Актуализация опорных знаний.

Технология «Мозговой штурм»

Учащимся предлагается дать ответ на вопрос:

1. Какой многоугольник называется правильным?

2. Назвать виды правильных многоугольников.

3. Какой многоугольник называется вписанным в окружность и описанный вокруг круга?

4. Как, в общем, находят радиус описанной окружности и радиус вписанной окружности для правильного многоугольника с известной стороной и определенным количеством сторон? Какие формулы вы знаете?

V. Решение задачи несколькими способами.

Технология «Аквариум»

Докладчики из каждой группы демонстрируют свои решения и дают ответ на вопросы представителей других групп. Их задача состоит в том, чтобы убедить всех в рациональности, доступности, удобства своего образа. Проводится запись путей решения в тетрадях.

Задача. Найти сторону правильного вписанного в круг треугольника с радиусом √3 (см.).

















У доски работают докладчики со своими вариантами решения.

I способ (1 группа)

Для решения задачи предлагается использовать формулу радиуса круга, описанного вокруг правильного треугольника со стороной а.

R=(a√3)/3

Откуда имеем a=R√3. Тогда, исходя из условия задачи, что R=√3 (см.) сторона треугольника равна a=√3×√3=3 (см.)

II способ (2 группа)

Второй способ заключается в использовании теоремы синусов и следствий из нее. В частности используем соотношение

= = = 2R, где a, b, c – стороны треугольника, а < А, < В, < С – соответствующие углы и R – радиус круга, описанного вокруг данного треугольника. Поскольку треугольник равносторонний, то все его стороны равны и углы по 60°, поэтому

= = = 2R

a = 2R, a = 2R= R

Следовательно, a==3 (см.)

III способ (3 группа)

В третьем способе можно использовать теорему косинусов для треугольника АОВ. Учитывая, что АО, ВО ,СО – биссектрисы соответствующих углов правильного треугольника, имеем:

= + – 2AO×OB×, де <АОВ=120° і = -

AO=OB=OC=R

=

AB=a, поэтому имеем

a=

IV способ (4 группа)

Четвертый способ решения связан с площадью треугольника. Так, рассмотрев треугольник АОВ, имеем:

, де , а ,

(см.)

Но если взглянуть с другой стороны, то площадь треугольника можно вычислить, используя радиус круга, описанного вокруг этого треугольника по формуле:

, так как по условию а=b=с, то

Приравняв оба значения площади, будем иметь:

;

;

;

;

a=R.

Если R=, то сторона данного треугольника будет равна

a=

Во время решения группа презентует решение, дает ответы на вопросы других групп, касающиеся данного способа решения или данной темы.

VI. Итог урока.

Учитель выслушивает взаимооценку работы в группах, а также подводит итог работы учащихся.

Рефлексия.

1) Какой способ для вас самый простой, а какой сложный и почему?

2) По вашему мнению, какой способ самый оригинальный?

3) Что нужно, чтобы решить задачу несколькими способами?

4) На какой балл вы оцениваете свою работу на уроке?

7. Домашнее задание.

Решить несколькими способами задачу:

На высоте ВК равнобедренного треугольника АВС (АВ=ВС) взята точка D. Доказать, что треугольник ADK равен треугольнику DKC.

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал
Скачать тест к материалу

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 486 023 материала в базе

Скачать материал
Скачать тест к материалу

Другие материалы

Тест по геометрии на тему "Остроугольный, прямоугольный и тупоугольный треугольники" (7 класс)
  • Учебник: «Геометрия», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: 31. Остроугольный, прямоугольный и тупоугольный треугольники
«Геометрия», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • 25.04.2018
  • 1730
Срез знаний по геометрии на тему "Правильные многоугольники. Длина окружности и площадь круга" (9 класс)
  • Учебник: «Геометрия», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: Глава 12. Длина окружности и площадь круга
«Геометрия», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • 25.04.2018
  • 643
Итоговая контрольная работа за курс 10 класса по математике
  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: Глава 3. Многогранники
«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • 25.04.2018
  • 368
Контрольная работа №4 по теме «Многогранники»
  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: Глава 3. Многогранники
«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
Рейтинг: 3 из 5
  • 25.04.2018
  • 5383
Контрольная работа №3 по теме «Перпендикулярность прямых и плоскостей»
  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: Глава 2. Перпендикулярность прямых и плоскостей
«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • 25.04.2018
  • 1852

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    Скачать тест к материалу
    • 25.04.2018 264
    • DOCX 25.4 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Рогачева Татьяна Викторовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Пожаловаться на материал
  • Автор материала

    Рогачева Татьяна Викторовна
    Рогачева Татьяна Викторовна
    • На сайте: 7 лет
    • Подписчики: 0
    • Всего просмотров: 26197
    • Всего материалов: 28