Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Разработка урока по теме "Применение метода интервалов для решения неравенств"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Математика

Разработка урока по теме "Применение метода интервалов для решения неравенств"

библиотека
материалов

Урок 34

Тема: Применение метода интервалов для решения неравенств

 

Цели:

  • Рассмотреть использование метода интервалов для решения неравенств других типов.

  • Развивать память, внимание и логическое мышление обучающихся.

  • Вырабатывать трудолюбие.


Ход урока.


I. Организационные моменты

Сообщение темы и цели урока

 

II. Повторение и закрепление пройденного материала:

1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).

2. Контроль усвоения материала (самостоятельная работа).


Вариант 1

1. Методом интервалов решите неравенство.

http://compendium.su/mathematics/algebra9/algebra9.files/image463.jpg

2. Найдите область определения функции http://compendium.su/mathematics/algebra9/algebra9.files/image464.jpg


Вариант 2

1. Методом интервалов решите неравенство.

http://compendium.su/mathematics/algebra9/algebra9.files/image466.jpg

2. Найдите область определения функции http://compendium.su/mathematics/algebra9/algebra9.files/image467.jpg

 

III. Изучение нового материала

Уже рассматривался метод интервалов. Применим тот же метод к решению неравенств высоких степеней. Рассмотрим схему решения на следующем примере.


Пример 1

Решим неравенство http://compendium.su/mathematics/algebra9/algebra9.files/image469.jpg

 

Прежде всего отметим, что если в разложение многочлена на множители входит сомножитель (х - х0)k, то говорят, что х0 - корень многочлена кратности k. Для решения неравенства важно знать, является ли k четным или нечетным числом, т. к. при четном k многочлен справа и слева от х0 имеет один и тот же знак (т. е. знак многочлена не меняется), а при нечетном k многочлен справа и слева от х0 имеет противоположные знаки (т. е. знак многочлена изменяется).

Вернувшись к данному неравенству, отметим, что многочлен имеет корни: х1 = -5 (кратности 8 - четная кратность), х2 = -2 (кратности 3 - нечетная), х3 = 0 (кратности 1 - нечетная), х4 = 1 (кратности 2 - четная), х5 = 3 (кратности 7 - нечетная). Нанесем эти корни на числовую ось и буквами «Н» и «Ч» отметим четность кратности этих корней.

 

http://compendium.su/mathematics/algebra9/algebra9.files/image470.jpg

 

Определим знак многочлена, стоящего в левой части неравенства при любом х, не совпадающем с корнями (например, при х = -3 многочлен отрицательный). Рассмотрим теперь знаки многочлена, двигаясь в положительном направлении оси 0х. Так как х = -2 — корень нечетной кратности, то при этом значении х происходит изменение знака многочлена на противоположный и многочлен на промежутке (-2; 0) положительный. При х = 0 (корень нечетной кратности) опять происходит изменение знака многочлена и он на промежутке (0; 1) становится отрицательным. Так как х = 1 - корень четной кратности, то многочлен знака не меняет и на промежутке (1; 3) он по-прежнему отрицательный. Рассуждая подобным образом, нетрудно получить полную диаграмму знаков многочлена на всей числовой оси, приведенную на рисунке. После этого легко ответить на вопрос задачи: при каких х знак многочлена неотрицательный. Из рисунка видно, что такими х являются http://compendium.su/mathematics/algebra9/algebra9.files/image471.jpg

Разумеется, в тех случаях, когда неравенство не имеет вида, приведенного в примере 1, необходимо, используя те или иные приемы, привести это неравенство к указанному виду.

 

Пример 2

Решим неравенство х3 + 6 > 7х.

Запишем неравенство в виде х3 + 6 - 7х > 0 и разложим многочлен в левой части на множители. Для этого член -7х представим как сумму двух слагаемых: -6х и -х и сгруппируем члены многочлена: х3 - х + (6 - 6х) > 0, или х(х2 - 1) - 6(х - 1) > 0, или х(х - 1)(х + 1) - 6(х - 1) > 0, или (х - 1)(х2 + х - 6) > 0. Разложение х2 + х - 6 на множители проводим стандартным путем, зная его корни (х = -3, х = 2), и окончательно получаем: (х - 1)(х +3)(х - 2) > 0. Все корни этого многочлена первой кратности, и дальнейшее решение не вызывает трудностей. Построив диаграмму знаков многочлена, найдем х  (-3; 1)U(2; +∞).

 

http://compendium.su/mathematics/algebra9/algebra9.files/image472.jpg

 

Остановимся теперь на решении рациональных неравенств методом интервалов.

Рациональные неравенства легко сводятся к решению неравенств высоких степеней. Действительно, после преобразований левая часть рационального неравенства может быть представлена в виде отношения многочленов Р(х) и Q(х), т. е. http://compendium.su/mathematics/algebra9/algebra9.files/image473.jpg Умножим обе части такого неравенства на многочлен [Q(x)]2, который положителен при всех допустимых значениях х (т. к.Q(x) ≠ 0). Тогда знак неравенства не меняется и получаем неравенство Р(х) · Q(x) v 0, эквивалентное данному. То есть исходное неравенство http://compendium.su/mathematics/algebra9/algebra9.files/image474.jpg эквивалентно системе неравенствhttp://compendium.su/mathematics/algebra9/algebra9.files/image475.jpg которая далее решается методом интервалов.

 

 

Пример 3

Решим неравенство http://compendium.su/mathematics/algebra9/algebra9.files/image476.jpg

Отметим прежде всего, что (5х - х2)(х + 2) ≠ 0, или х(5 - х)(х + 2) ≠ 0, т. е. х ≠ -2, х ≠ 0, х ≠ 5 (ОДЗ неравенства). Сведем данное рациональное неравенство к алгебраическому (аналогичному примеру 1). Для этого умножим обе части неравенства на положительное выражение - квадрат знаменателя (5х - х2)2(х + 2)2. При этом знак неравенства не меняется и получаем: (х2 + 1)(х2 - 2х - 3)(5х - х2)(х + 2) ≥ 0. Разложив квадратные трехчлены на множители, имеем: (х2 + 1)(х - 3)(х + 1)х(5 - х)(х + 2) ≥ 0. Решаем это неравенство методом интервалов, учитывая, что все корни многочлена имеют первую кратность: х  (-∞; -2]U[-1; 0]U[3; 5).

 

http://compendium.su/mathematics/algebra9/algebra9.files/image477.jpg

 

Теперь учтем ОДЗ исходного неравенства и окончательно найдем: х  (-∞; -2)U[-1; 0)U[3; 5).

В более сложных случаях рациональные неравенства сначала сводятся к неравенствам, аналогичным примеру 3, а затем решаются методом интервалов.

 

Пример 4

Решим неравенство http://compendium.su/mathematics/algebra9/algebra9.files/image478.jpg

Чтобы свести пример к аналогичному предыдущему примеру, перенесем все члены неравенства в его левую часть: http://compendium.su/mathematics/algebra9/algebra9.files/image479.jpg Приведя дроби к общему знаменателю, получим: http://compendium.su/mathematics/algebra9/algebra9.files/image480.jpg т. е. неравенство предыдущего типа. Решая его аналогично, найдем: х  (-∞; -8]U(-3; -1)U[1; 7).

 

http://compendium.su/mathematics/algebra9/algebra9.files/image481.jpg

 

Для диаграммы знаков учтены корни числителя х2 + 7х - 8 (х = -8 и х = 1), первая кратность всех корней и ограничения на х (х ≠ -3, х ≠ -1, х ≠ 1).

 

 

Пример 5

Решить неравенство http://compendium.su/mathematics/algebra9/algebra9.files/image482.jpg

ОДЗ неравенства определяется условиями: х - 1 ≠ 0, х - 3 ≠ 0 (т. е. х ≠ 1, х ≠ 3). Почленно разделим дроби в левой части неравенства на знаменатели, сгруппировав слагаемые в числителях дробей: http://compendium.su/mathematics/algebra9/algebra9.files/image483.jpg или http://compendium.su/mathematics/algebra9/algebra9.files/image484.jpg или http://compendium.su/mathematics/algebra9/algebra9.files/image485.jpg или http://compendium.su/mathematics/algebra9/algebra9.files/image486.jpg Приводим дроби к общему знаменателю и получаем: http://compendium.su/mathematics/algebra9/algebra9.files/image487.jpg Далее решаем это неравенство по обычной схеме и находим: х  (1; 2]U(3; +∞).

 

http://compendium.su/mathematics/algebra9/algebra9.files/image488.jpg

 

При наличии в рациональных неравенствах знаков модуля их надо раскрыть.

 

 


IV. Формирование умений и навыков обучающихся:

Задание на уроке:

327 (а); 328 (б); 329 (а); 332 (б); 334 (в, г); 335 (а, г); 336 (а, б); 337 (в, г); 338 (а, г).

  

  1. Подведение итогов урока


  1. Задание на дом:

327 (б); 328 (а); 329 (б, в); 333 (а); 334 (а, б); 335 (б, в); 36 (в, г); 337 (а, б); 338 (б, в).


5


Автор
Дата добавления 19.12.2015
Раздел Математика
Подраздел Конспекты
Просмотров132
Номер материала ДВ-271934
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх