Инфоурок / Математика / Рабочие программы / Разработка урока "Қисықсызықты трапецияның ауданы" 11класс
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Законы экологии», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 21 ОКТЯБРЯ!

Конкурс "Законы экологии"

Разработка урока "Қисықсызықты трапецияның ауданы" 11класс

библиотека
материалов

hello_html_m2a7690f7.gifhello_html_43eef73f.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m5abe625e.gifhello_html_m2a7690f7.gifСабақтың тақырыбы: Қисықсызықты трапецияның ауданы .



Сабақтың мақсаты :

  • Оқушылардың қисықсызықты трапецияның ауданын табу дағдыларын жетілдіру;

  • Оқушыларды ұйымшылдыққа, ұқыптылыққа, дәлдікке тәрбиелеу;

  • Оқушылардың ойын жеткізу білуін және ой өрісін дамыту.



Сабақтың типі: Практикалық сабақ .



Сабақтың көрнекілігі: документ - камера; тапсырмалар жазылған парақтар.



Сабақтың барысы :



  1. Ұйымдастыру .

Оқушыларды түгендеу. Сабақтың мақсатымен таныстыру. Оқушылардың назарын сабаққа аудару.



  1. Үй жұмысын тексеру.



  1. Қайталау.

Қайталауға арналған сұрақтар:

А) Қисықсызықты трапеция деп қандай фигураны айтады? (үзіліссіз, y=f(x), f(x)>0 функциясының графигімен, абсцисса осімен және x=a. x=b түзулерімен шектелген жазық фигура қисықсызықты трапеция деп аталады)

Ә) Қисықсызықты трапецияның ауданын есептеу формуласы (S=F(b)-F(a))

Б) Қисықсызықты трапецияның табаны дегеніміз не? (қисықсызықты трапецияның табаны ретінде алынатын [a;b] кесіндісі)

В) Қисықсызықты трапецияның ауданын есептейтін алгоритм (1. Бір координаталық жазықтықта берілген қисықтардың графиктерін салу; 2. Графигі жоғарыдан қисықсызықты трапецияны шектейтін функцияның алғашқы функцияларының бірін анықтау; 3. Қисықсызықты трапецияның төменгі табаны болатын кесіндінің шеткі нүктелерінің координаталарын анықтау; 4. S=F(b)-F(a) формуласы бойынша қисықсызықты трапецияның ауданын есептеу)





  1. Практикалық жұмыстар.

1-тапсырма. Топтық жұмыс. Әрбір қатарға бірдей тапсырма таратылады, барлығы бірге орындайды. Тест арқылы есептер шығарып, олардың жауап нұсқаларынан жасырын сөзді табу керек.

1. x=2, x=3, y=0, f(x)=x2 -2x+1 сызықтарымен шектелген қисықсызықты трапецияның ауданын табыңдар.

З) 2 И)2 К) 2

2. Ох осімен және x=0, x=π түзулері, y=sinx функциясының графигімен шектелген қисықсызықты трапецияның ауданын табыңдар.

Л) 2,5 М) 2,1 Н) 2

3. x=-2, у=0, y=x2 сызықтарымен шектелген қисықсызықты трапецияның ауданын табыңдар.

Т)2 У)2 Ф) 2

4. x=1, x=2, y=x2 , у=0 сызықтарымен шектелген қисықсызықты трапецияның ауданын табыңдар.

Г) 2 Д) 2 Е)2

5. у=0, у= x3, х=2 сызықтарымен шектелген қисықсызықты трапецияның ауданын табыңдар.

Г) 4 Д) 3 Е) 2

6. x=-1, x=2, y=x2+1 , у=0 сызықтарымен шектелген қисықсызықты трапецияның ауданын табыңдар.

П)5 Р)6 С) 4

7. x=3, y=x2 , у=0 сызықтарымен шектелген қисықсызықты трапецияның ауданын табыңдар.

А) 9 Б)7 В) 8

8. . x=0, x= π/2, y=cosx , у=0 сызықтарымен шектелген қисықсызықты трапецияның ауданын табыңдар.

К)0,5 Л)1 М) 1,5

2-тапсырма. Тақтаға әрбір қатардан 1 оқушыдан шығады.

Интеграл арқылы суреттегі фигураның ауданын жазыңдар:

А) у=f(x)

а в

Б) у=х



0

1 2

В) y=x2



2



3-тапсырма. Оқушылар дәптерлеріне орындап, документ – камера арқылы тексертеді.

2

1) Ауданы (x+1) dx интегралына тең фигураны салыңдар.

1

3

2) Ауданы x2 dx интегралына тең фигураны салыңдар.

1

2

3) Ауданы (x2 - 1) dx интегралына тең фигураны салыңдар.

0

  1. Қорытындылау.

Блумның «МЕН» жүйесі арқылы сабақты қорытындылау.



  1. Үйге тапсырма беру.

30



  1. Бағалау.



Краткое описание документа:

üОқушылардың қисықсызықты трапецияның ауданын табу дағдыларын жетілдіру;

üОқушыларды ұйымшылдыққа, ұқыптылыққа, дәлдікке тәрбиелеу;

üОқушылардың ойын жеткізу білуін және ой өрісін дамыту.

документ - камера; тапсырмалар жазылған парақтар.

 

Практикалық сабақ .

1.     Ұйымдастыру .

Оқушыларды түгендеу. Сабақтың мақсатымен таныстыру. Оқушылардың назарын сабаққа аудару.

 

2.     Үй жұмысын тексеру.

 

3.     Қайталау.

Қайталауға арналған сұрақтар:

А) Қисықсызықты трапеция деп қандай фигураны айтады? (үзіліссіз, y=f(x), f(x)>0 функциясының графигімен, абсцисса осімен және x=a. x=b түзулерімен шектелген жазық фигура қисықсызықты трапеция деп аталады)

Ә) Қисықсызықты трапецияның ауданын есептеу формуласы (S=F(b)-F(a))

Б) Қисықсызықты трапецияның табаны дегеніміз не? (қисықсызықты трапецияның табаны ретінде алынатын [a;b] кесіндісі)

 

В) Қисықсызықты трапецияның ауданын есептейтін алгоритм (1. Бір координаталық жазықтықта берілген қисықтардың графиктерін салу; 2. Графигі жоғарыдан қисықсызықты трапецияны шектейтін функцияның алғашқы функцияларының бірін анықтау; 3. Қисықсызықты трапецияның төменгі табаны болатын кесіндінің шеткі нүктелерінің координаталарын анықтау; 4. S=F(b)-F(a) формуласы бойынша қисықсызықты трапецияның ауданын есептеу)

Общая информация

Номер материала: 400356

Похожие материалы