Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Реферат «Методика обучения арифметическим задачам на уроках математики»

Реферат «Методика обучения арифметическим задачам на уроках математики»


  • Математика

Поделитесь материалом с коллегами:












РЕФЕРАТ

«Методика обучения арифметическим задачам на уроках математики»





















2015 год

Содержание

Стр.

Введение------------------------------------------------------------------------------------3-5

I. Этапы работы над арифметической задачей.-----------------------------------6-20

  1. Работа над содержанием задачи.

  2. Поиск решения задачи.

  3. Решение задачи.

  4. Формулировка ответа.

  5. Проверка решения задачи.

  6. Последующая работа над решенной задачей.

II. Методика решения простых арифметических задач.-----------------------21-24

III. Методика решения составных арифметических задач.-------------------24-32

IV. Задачи на зависимость между скоростью, временем и

расстоянием.---------------------------------------------------------------------------33-36

Литература----------------------------------------------------------------------------------37

















Введение.

Арифметические задачи в курсе математики в школе VIII вида занимают значительное место. Почти половина времени на уроке математики отводится решению задач. Это объясняется больше коррекционно-воспитательной и образовательной ролью, которую они играют при обучении школьников с нарушением интеллекта.

Решение арифметических задач помогает раскрыть основной смысл арифметических действий, конкретизировать их, связать определенной жизненной ситуацией. Задачи способствуют усвоению математических понятий, отношений, закономерностей, в этом случае они, как правило, служат конкретизации этих понятий и отношений, так как каждая сюжетная задача отражает определенную жизненную ситуацию.

При решении задач у умственно отсталых школьников развивается произвольное внимание, наблюдательность, логическое мышление, речь, сообразительность. Решение задач способствует развитию таких процессов познавательной деятельности, как анализ синтез, сравнение, обобщение.

В процессе решения арифметических задач учащиеся учат планировать и контролировать свою деятельность, овладевают приемами самоконтроля (проверка задачи, прикидка ответа, решение задачи разными способами и т. д.), у них воспитывается настойчивость, воля, развивается интерес к поиску решения задачи

Велика роль решения задач в подготовке умственно отсталых, учащихся к жизни, к их дальнейшей трудовой деятельности. Именно упражнения в решении и составлении задач, помогая учащимся видеть в окружающей действительности такие факты, закономерности, которые используются в математике. При решении сюжетных задач учащиеся учатся переводить отношения между предметами и величинами на «язык математики».

Решение арифметических задач на уроках математики позволит реализовать задачу подготовки учащихся к более успешному овладению профессиональным трудом, сблизить обучение с жизнью.

Умением решать арифметические задачи учащиеся овладевают с большим трудом.

Трудности в решении задач у умственно отсталых учащихся связаны с недостаточным пониманием предметно-действенной ситуации, отраженной в задаче, и математических связей и отношений между числовыми данными, а также между данными и искомыми.

Опыт показывает, что школьники с нарушением интеллекта справляются с решением задач, если они составлены на основе действий с реальными предметами. Основные трудности возникают тогда, когда необходимо наглядно представить словесно сформированные задачи. В их сознании не всегда возникает отражение действительного содержания ситуации и заключенных в ней предметных отношений. Понимание условия задачи нередко не отвечает ее предметному содержанию.

При решении задач учащиеся не фиксируют свое внимание на математических отношениях, с учетом которых должны выполняться действия.

В процессе обучения решению задач следует избегать натаскивания в решении задач определенного вида, надо учить сознательному подходу к решению задач, учить ориентироваться в определенной жизненной ситуации, описанной в задаче, учить осознанному выделению данных и искомого задачи, установлению взаимосвязи между ними, осознанному выбору действий.

Ошибки, которые учащиеся допускают при решении задач, можно классифицировать так:

  1. Привнесение лишнего вопроса и действия.

  2. Исключение нужного вопроса и действия.

  3. Несоответствие вопросов действиям: правильно поставленные вопросы и неправильный выбор действий или, наоборот, правильный выбор действий и неверная формулировка вопросов.

  4. Случайный подбор чисел и действий.

  5. Ошибки в наименовании величин при выполнении действий: а) наименования не пишутся; б) наименования пишутся ошибочно, вне предметного понимания содержания задачи; в) наименования пишутся лишь при отдельных компонентах.

  6. Ошибки в вычислениях.

  7. Неверная формулировка ответа задачи (сформулированный ответ не соответствует вопросу задачи, стилистически построен неверно, не соответствует ответу последнего действия и т. д.)

Сознательному подходу к решению любой задачи умственно отсталых школьников необходимо обучать последовательно и терпеливо, формируя у них определенные умственные действия.















    1. Этапы работы над арифметической задачей.

В методике работы над любой арифметической задачей можно выделить следующие этапы: 1) работа над содержанием задачи; 2) поиск решения задачи; 3) решение задачи; 4) формулировка ответа; 5) проверка решения задачи; 6) последующая работа над решенной задачей.

1. Работа над содержанием задачи.

Большое внимание следует уделять работе над содержанием задачи, т.е. над осмыслением ситуации, изложенной в задаче, установлением зависимости между данными, а также между данными и искомым. Последовательность работы над усвоением содержания задачи:

а) разбор непонятных слов или выражений, которые встретятся в тексте задачи;

б) чтение текста задачи учителем и учащимися;

в) запись условия задачи;

г) повторение задачи по вопросам;

д) воспроизведение одним из учащихся полного текста задачи.

Работа над отдельными словами и выражениями должна вестись не тогда, когда учитель знакомит учащихся с содержанием задачи, а раньше, до предъявления задачи, иначе словарная работа разрушает структуру задачи, уводит учащихся от понимания арифметического содержания задачи, зависимости между данными. Текст задачи первоначально рассказывает или читает учитель, а начиная со 2-го класса его могут читать и ученики по учебнику или по записи на доске. Читать задачу нужно выразительно, выделяя голосом математические выражения. Задачу следует иллюстрировать.

Если в 1-м классе текст задачи иллюстрируется с помощью предметов или рисунков, то в конце 1-го и во 2-м классе надо учить учащихся заменять элементы предметных множеств, о которых говорится в задаче, их символами, при этом сохраняя равночисленность множеств. Например, если в задаче речь идет о деревьях, то рисунок дерева заменяют палочки.

Наряду с конкретизацией содержания задачи с помощью предметов, трафаретов и рисунков в практике работы учителей школы VIII вида широкое распространение получили следующие формы записи содержания задачи:

  1. Сокращенная форма записи, при которой из текста задачи выписывают числовые данные и только те слова и выражения, которые необходимы для понимания логического смысла задачи. Вопрос задачи записывается полностью. Например: «В вазе стоял букет цветов из ромашек и васильков. В букете было 7 ромашек, а васильков на 5 штук больше. Сколько всего цветов в букете?» Сокращенная запись: «Ромашек 7 штук, васильков на 5 штук больше. Сколько всего цветов?»

  2. Сокращенно-структурная форма записи, при которой каждая логическая часть задачи записывается с новой строки. Вопрос задачи записывается или внизу, или сбоку. Текст задачи принимает наглядно-воспринимаемую форму. Например: Сколько всего цветов? Ромашек7 штук. Васильков на 5 штук больше.

  1. Схематическая форма записи. Это запись содержания задачи в виде схемы (рис. 32). В схеме желательно сохранить пропорции, соответствующие числовым данным. «В одном ящике 17 кг помидоров, а в другом на 5 кг больше. Сколько килограммов помидоров в двух ящиках?»

  2. Графическая форма записи. Это запись содержания задачи в виде чертежа, диаграммы. Удобнее всего в графической форме записывать задачи на движение (рис. 33).

  3. Опыт показывает, что пониманию зависимости между числовыми данными, а также между данными и искомыми в некоторых задачах способствует не конкретизация условия, а наоборот, абстрагирование от конкретной ситуации. К таким задачам относятся задачи на пропорциональную зависимость (на соотношение скорости, времени и пути; цены, количества и стоимости и др.).

http://lib2.podelise.ru/tw_files2/urls_1/45/d-44347/44347_html_72e216c6.png


Цена

Количество

Стоимость

Одинаковая

3 л

8 л

7 р. 50 к.
X

Для записи таких задач лучше всего использовать таблицу, в графы которой записываются числовые данные задачи. Например: «За 3 литра молока уплатили 7 р. 50 к. Сколько стоят 8 л молока?»

В данном случае абстрагирование от предметного содержания задачи помогает учащимся лучше осмыслить зависимость между данными и искомой величиной.

Указанным формам записи содержания задач умственно отсталых школьников необходимо учить так, чтобы они самостоятельно могли выбрать наиболее рациональную форму и записать задачу. Овладевают этими формами записи учащиеся медленно. Учителю необходимо соблюдать систему, поэтапность в обучении:

  1. После ознакомления учащихся с текстом задачи учитель сам дает краткую запись содержания задачи на доске, учащиеся записывают ее одновременно с учителем в тетрадь.

  2. После разбора условия задачи краткую запись на доске делает ученик под руководством учителя, при активном участии учащихся всего класса.

  3. Вызванный к доске ученик самостоятельно читает задачу и дает ее краткую запись под контролем учителя.

  4. Самостоятельная запись условия задачи учащимися

Лучшему восприятию и пониманию задачи способствует ее повторение по вопросам. (Форма вопросов при повторении задач меняется: сначала учитель задает конкретные вопросы, а затем обобщенные).

2. Поиск решения задачи.

На этом этапе учащиеся, отвечая на вопросы учителя, поставленные в определенной логической последовательности, подводятся к составлению плана решения задач и выбору действий. Намечаются план и последовательность действий — это следующий этап работы над задачей.

Выбор действия при решении задачи определяется той зависимостью, которая имеется между данными и искомыми в задаче. Зависимость эта правильно может быть понята в том случае, если ученики поняли жизненно-практическую ситуацию задачи и могут перевести зависимость между предметами и величинами на «язык математики», т. е. правильно выразить ее через действия над числами. С этой целью учитель проводит беседу с учащимися, которая называется разбором задачи. В беседе устанавливается зависимость между данными и искомым. При разборе содержания задачи нового вида учитель ставит вопросы так, чтобы подвести учащихся к правильному и осознанному выбору действия.

Разбор задачи можно начинать с числовых данных (сверху) и вести учащихся к главному вопросу задачи. К двум числовым данным, которые вычленяются из условия задачи, подбирается вопрос. Например: «Школьники на пришкольном участке посадили 17 грядок помидоров, по 30 штук на каждой, и 20 грядок капусты, по 25 штук на каждой. Сколько всего штук рассады посадили?» Беседу учитель проводит так: «Известно, что посадили 17 грядок помидоров, по 30 штук на каждой. Что можно узнать по этим данным? Каким действием? (Умножением. Надо 30 шт. Х17.) Почему?

Известно также, что посадили 20 грядок капусты, по 25 штук на каждой. Что можно узнать по этим данным? (Сколько штук рассады капусты посадили?) Каким действием? (Умножением. Нужно: 25 шт.х20.) Почему? Теперь известно, сколько посадили помидоров и капусты отдельно. Что отсюда можно узнать? (Сколько всего штук рассады посадили?) Каким действием это можно узнать? (Сложением.) Почему? Что нужно было узнать в задаче? Ответили ли мы на главный вопрос задачи? Решили ли мы задачу?»

Разбор задачи можно начинать от главного вопроса задачи (снизу).

При этом к вопросу учащиеся должны подобрать 2 числа. Беседу можно построить так: «Можно ли сразу ответить на вопрос задачи? Почему нет? Какие данные нужны для ответа на главный вопрос? Каких данных недостает для ответа на главный вопрос задачи? Можно ли узнать, сколько штук рассады помидоров посадили? Что для этого надо знать? Есть ли эти числа в задаче? Каким действием можно узнать, сколько штук рассады капусты посадили? Почему? Что для этого надо знать? Есть ли эти числа в задаче? Каким действием это можно узнать? Почему? Можно ли теперь ответить на главный вопрос задачи? Каким действием? Почему? Решили ли задачу? Почему?»

В младших классах школы VIII вида при разборе задачи рассуждения чаще всего проводятся от числовых данных к вопросу задачи, так как учащимся легче к выделенным числовым данным поставить вопрос, чем подобрать два числа (из них могут быть оба числа или одно неизвестны) к вопросу задачи. Однако, начиная с 3-го класса, следует проводить рассуждения от главного вопроса задачи, так как такой ход рассуждений более целенаправлен на составление плана решения в целом (а не на выделение одного действия, как это происходит при первом способе разбора — от данных к вопросу задачи).

3. Решение задачи.

Опираясь на предыдущий этап, в процессе которого учащиеся осуществляли поиск решения задачи, они готовы устно сформулировать вопросы задачи и назвать действия.

Учитель спрашивает: «Во сколько действий задача? Какой первый вопрос? Каким действием можно ответить на этот вопрос?» и т. д.

Далее устно составляется план и намечается последовательность действий. «Итак, — спрашивает учитель, — какой первый вопрос? Какое действие? Какой второй вопрос?» и т. д. После этого учащимся предлагается записать решение.

4. Запись решения задач.

В 1-м классе в начале учебного года учащиеся еще не знают букв, не умеют их писать, поэтому решение задачи записывается соответствующим арифметическим действием без наименований. Вместо букв учащиеся около чисел могут нарисовать предмет: яблоко, мяч, палочку и т. д.

Действие записывается в середине строки, чтобы отличить его от записи примера. При этом учитель учит учащихся давать краткое пояснение к выполняемому действию (устно). По мере изучения букв учащихся учат записывать решение задачи с наименованием. Начиная со 2-го класса вводится запись решения задач с пояснением. Например: «С аэродрома вылетело сначала 7 самолетов, а потом еще 5 самолетов. Сколько всего самолетов вылетело с аэродрома?»

Решение этой задачи записывается так:

7 с.+ 5 с. = 12 с. (вылетело с аэродрома) 354

При записи сложных задач могут использоваться следующие

формы записи:

а) запись арифметических действий и ответа задачи;

б) запись решения с пояснением того, что найдено в результате каждого действия;

в) запись решения с вопросами (вопросы и действия чередуются). В конце записывается ответ;

г) запись сначала только плана решения, затем соответствую-
I тих действий или, наоборот, запись сначала действий, а затем

плана решения задачи. В конце записывается ответ.

5. Формулировка ответа.

Форма ответа может быть краткой и полной. Например, краткая форма ответа: 283 кг или 283 кг яблок; полная форма ответа: 283 кг яблок было собрано за три дня. За три дня было собрано 283 кг яблок.

6. Проверка решения задачи.

Так как функция контроля у школьников с нарушением интеллекта ослаблена, то проверка решения задач имеет не только образовательное, но и коррекционное значение.

В младших классах необходимо:

  1. Проверять словесно сформулированные задачи, производи!
    действия над предметами, если, конечно, это возможно. Например: «У ученика было 15 р. Он купил 5 тетрадей по 2 р. Сколько
    денег у него осталось?» После решения задачи ученик берет по
    2 р. 5 раз и считает, сколько всего денег. Потом из 15р. вычитает 10 р., получается 5 р.

  2. Проверять реальность ответа (соответствие его жизненной
    действительности).

  3. Проверять соответствие ответа условию и вопросу задачи.
    (О чем спрашивается в задаче? Получили ли ответ на вопрос
    задачи?)

Проверка решения задачи другим способом ее решения возможна с 4-го класса.

Опыт показывает, что учащиеся школы VIII вида могут научиться сознательно проверять те задачи, в условиях которых дана сумма, а в результате конечного и промежуточных действий отыскиваются компоненты суммы, т. е. слагаемые. Например: «На ремонт школы израсходовано 3500 р. Из них 2270 р. израсходовано на побелку потолков и окраску стен, 458 р. — на ремонт электропроводки. Остальные деньги израсходованы на ремонт мебели. Сколько денег израсходовано на ремонт мебели?» Для проверки этой задачи учащиеся складывают три слагаемых и получают сумму, израсходованную на ремонт школы, т. е. 3500 р. (цены в задаче условные).

Для осуществления проверки задачи очень полезна прикидка ответа до решения задачи.

Для контроля правильности решения задачи используются и некоторые элементы программированного контроля. Например, учитель пишет на доске ответы конечного и промежуточных действий, только не в том порядке, который необходим при решении задачи; учащиеся (при самостоятельном решении) сверяют ответы промежуточных действий и «запрограммированные» ответы. Этот прием очень полезен тем, что ученик сразу получает подкрепление правильности или, наоборот, ошибочности своих действий. При ошибочности решения он ищет новые пути решения.

7. Последующая работа над решенной задачей.

Учитель школы VIII вида зачастую не может быть уверен, что решение задачи (хотя задача разобрана и решена) понято всеми учениками. Поэтому очень полезно провести работу по закреплению решения этой задачи.

Работа по закреплению решения задачи может быть проведена различными приемами.

1. Ставятся узловые вопросы по содержанию задачи. Например:

Сколько дней дети собирали яблоки с пришкольного участка?

Известно ли, сколько яблок дети собрали в первый день (во второй день, в третий день)?

Что неизвестно в задаче?

Что нужно узнать в задаче?

Можно ли сразу ответить на главный вопрос задачи?

Какого данного для этого не хватает?

Как решали задачу?

2. Предлагается рассказать весь ход решения задачи с обоснованием выбора действий.

3. Ставятся вопросы к отдельным действиям или вопросам.

Например:

Почему в первом действии выполнили вычитание?

Для чего нужно было узнавать, сколько собрали яблок во второй день?

Почему во втором действии три слагаемых? И т. д.

С закреплением решения задач тесно связана последующая работа над решенной задачей, которая способствует осознанному выбору действий и подходу к решению задачи.

Для учащихся школы VIII вида важно не количество решенных аналогичных задач, а понимание предметной ситуации и зависимости между данными. Этой цели и служит последующая работа над решенной задачей, которую можно рассматривать как важный прием, формирующий умение решать задачи данного вида.

  1. Рассмотрим несколько вариантов последующей работы над решенной задачей на примере задачи, разобранной выше: Изменение отношений между данными условия задач, выяснение, как это изменение отразится на решении задачи, пример: «Если бы в задаче было сказано, что во второй собрано на 35 кг больше, чем в первый день, как тогда
    решалась задача?»

  2. Изменение вопроса задачи. Например: «Если в главном
    вопросе спрашивается, на сколько килограммов яблок собрано меньше во второй день, чем в третий, как тогда бы решалась зада»;

  3. Изменение условия задачи, привнесение в него дополнительного данного или изъятие какого-либо данного. Например: «В условии задачи сказано, что в третий день собрано сто яблок, сколько в первый и второй день вместе, тогда как решается задача? Во сколько действий будет эта задача?» и т.д.

  4. Изменение числовых данных, сюжета задачи, решение задачи, аналогичной данной.

Конечно, не над каждой решенной задачей следует проводить такую последующую работу. Однако надо помнить, что это один из полезных приемов, который учит самостоятельному решению задач, пониманию зависимости между данными, между данными и искомым, а также тому, как эта зависимость отражается на выборе арифметических действий.

Для того чтобы учащиеся научились решать задачи данного вида и приобрели навык обобщенного способа решения таких задач, требуется многократное решение достаточного количества задач. Однако решать подряд задачи одного вида не следует, так как это может привести к «натаскиванию» учащихся в их решении только на короткий срок. Полезно чередовать решение разных видов задач, сравнивать их, выделять черты сходства и различия. Этому способствует использование приема сравнения.

Наблюдения показывают, что при сравнении учащиеся лучше понимают жизненную предметную ситуацию задачи, те существенные, а не случайные, чисто внешние признаки, которые влияют на выбор арифметического действия при решении задачи. Прием сравнения необходимо использовать уже в 1-м классе при обучении учащихся решению задач на нахождение суммы и на нахождение остатка, а также на всех последующих годах обучения.

Когда два вида задач сравниваются впервые, целесообразно решить эти задачи, а затем сравнить их решения, ответы, условия и вопросы задач. Затем сравнение условий двух простых задач должно предшествовать их решению.

Например, учащимся предлагаются для решения две такие задачи:

' 1. В одной корзине 15 белых грибов, а во второй на 4 гриба больше. Сколько белых грибов во второй корзине?

2. В одной корзине 15 белых грибов, а во второй на 4 гриба меньше. Сколько грибов во второй корзине?

Сначала разбирается условие первой задачи. Решение. 15 гр.+4 гр. = 19 гр. Ответ. 19 гр. во второй корзине.

Затем разбирается и решается вторая задача: 15 гр.—4 гр.=11 гр. но второй корзине. Ответ. 11 гр. во второй корзине.

Далее сравниваются решения задач: «Каким действием решена первая задача? Каким действием решена вторая задача?» Затем выясняется причина решения первой задачи сложением, а второй — вычитанием: «Почему первая задача решена сложением? Почему вторая задача решена вычитанием?» От сравнения решений задач переходят к сравнению условий: «В первой задаче сказано, что во второй корзине на 4 гриба больше, а во второй задаче сказано, что во второй корзине на 4 гриба меньше. Сколько грибов в первой корзине (первая задача)? А во второй корзине? Известно ли, сколько грибов в первой корзине (первая задача)? А во второй? Что сказано о грибах во второй корзине в первой задаче? А во второй задаче? Что нужно узнать в первой задаче? Во второй задаче? В чем сходство этих задач? В чем их различие? От чего зависит действие в первой задаче? Во второй? Какой ответ первой задачи? Какой ответ второй задачи? Почему ответ первой задачи больше, чем второй, хотя числа одинаковые в обеих задачах?» Учитель делает вывод: первая задача решается сложением, а вторая — вычитанием, потому что в условии первой задачи сказано, что во второй корзине на 4 гриба больше, чем в первой, а во второй задаче сказано, что во второй корзине на 4 гриба меньше, чем в первой.

Необходимо учить детей сравнивать решенную задачу с новой, еще не решенной, а потом сравнивать две задачи до их решения. Очень важно показать учащимся, по каким параметрам идет сравнение, что нужно сравнивать. Сначала выделяются известные данные одной и другой задач (рассматриваются первые числовые данные, затем вторые, если второе числовое данное неизвестно, то выясняется, что о нем в задаче сказано). Далее сравниваются вопросы. Определяется конечное искомое в первой и во второй задачах. Выясняется, в чем сходство задач, в чем их различие, как решается первая задача, как решается вторая задача, в чем их различие в решении и чем оно вызвано, какие данные в условии или какие вопросы определили выбор (или количество) действии первой и второй задач.

Лучшему пониманию предметного содержания задач, зависимости между данными и искомыми способствует решение задач с лишними или недостающими числами данными или данными, записанными не числами, а словами.

Дети с нарушением интеллекта на первых порах не замечают отсутствующее данное, привносят свои данные и начинают решать уже не ту задачу, которую учитель дал, а ту, которую составил сам ученик.

Поэтому решение задач с недостающими данными, данными, записанными не только числами, но и словами, с лишними числовыми данными, которые учащиеся должны отбросить, так как они не нужны для ответа на главный вопрос задачи («Маша нашла 3 белых гриба и 2 сыроежки, а Витя нашел 4 лисички. Сколько грибов нашла Маша?»), не только способствует более тщательному анализу условия задачи, а следовательно, и обучает их решению, но и играет значительную коррекционную роль.

Сознательному отношению к выбору действий способствует решение задач, в которых слова осталось, стало, часто являющиеся для учащихся ориентирами для выбора действия, выступают в новом качестве. Например: «В одной коробке осталось 5 карандашей, а в другой — 3 карандаша. Сколько карандашей осталось?» Ученики убеждаются, что при выборе действий нельзя руководствоваться одним словом.

Наблюдения показывают, что лучшие учителя школ VIII вида широко используют как один из приемов обучения решению задач составление задач самими учащимися. Составление задач помогает школьникам с нарушением интеллекта лучше осознать жизненно-практическую значимость задачи (особенно если учитель постоянно ведет работу, направленную на решение и составление реальных, жизненно достоверных задач), глубже понять ее структуру, а также различать задачи различных видов, осознать приемы их решения.

Составление задач проводится параллельно с решением готовых задач. Опыт и наблюдения показывают, что легче всего для учащихся частичное составление задач. С него и следует начать обучение составлению задач.

  1. В готовое условие вставляется одно, а затем и два пропущенных числовых данных. Например: «Ученица заплатила за карандаш 2 р., а за тетрадь ... . Сколько стоит покупка?»

  2. К готовому условию ставятся вопросы. Например: «В тетради 12 страниц. Мальчик исписал 5 страниц. Поставить вопрос к задаче».

Когда учащиеся познакомятся с несколькими видами простых задач, то можно дать задание на постановку разных вопросов к условию (сюда относятся задачи на нахождение суммы и на разностное сравнение).

3. К вопросу подбирается условие задачи. Например: «Составить задачу с таким вопросом: во сколько раз больше весит ведро
с водой, чем пустое ведро?»

Для полного составления задач учащимся можно предложить самые разнообразные варианты:

  1. Составление задачи по инсценировке. Учитель дает одному
    ученику 5 тетрадей, другому — 3 тетради и просит положить их
    в папку. Папку закрывает. «Составьте задачу», — говорит учи
    тель.

  2. Составление задачи по иллюстрациям: по картине, плакату,
    схеме, чертежу, краткой записи условия. Например, на плакате на
    рисованы две коробки карандашей. В одной коробке видны 6 карандашей, другая коробка закрыта, под ней написано: на 2 карандаша
    меньше. По рисунку учащиеся должны составить задачу.

  1. Составление задач по числовым данным: «Составить задачу
    с числами 8 и 10».

  2. Составление задач по готовому решению: «Составить задачу,
    которая решалась бы так: 5 ябл.+З ябл. = 8 ябл., 8 ябл.:2=4 ябл.»

  3. Составление задачи по готовому плану.

  4. Составление задач на указанное арифметическое действие:
    «Составить задачу, которая решалась бы сложением, умножением» и т.д.

  5. Составление задачи определенного вида: «Составить задачу на
    деление на равные части, на нахождение одной части от числа, и.)
    увеличение числа на несколько единиц (в несколько раз)» и т. д.

  6. Составление аналогичных задач: «Составить похожую задачу, но с другими числами и предметами».

Следует стимулировать составление учащимися задач с разно образными фабулами. Это способствует развитию их воображения, смекалки, инициативы. Очень полезно, когда для составлении задач учащиеся привлекают материал, «добываемый» ими во время экскурсий, из справочников, газет, журналов, хронологических таблиц. Очень полезно, когда числовые данные получаю: сами учащиеся путем измерений, выполнения различных заданий практического характера. «Добывать» числовые данные могут учащиеся старших классов, которых надо нацеливать на получение их в учебных мастерских, во время выполнения общественно полезной работы. Например, учитель может дать задание: записать размеры заготовок для изготовления табурета в столярной мастерской, расход материалов на пошив простыни, наволочки, пододеяльника, блузки и других изделий при различной ширине ткани, расход картона на изготовление того или иного изделия и т. п. Привлечение числовых данных для составления задач из учебных мастерских будет способствовать осуществлению связи преподавания математики с трудом, будет лучше готовить учащихся к жизни.

Удачно составленные учениками задачи надо хранить, можно составить даже небольшой «задачник» из задач, составленных учениками одного или двух классов, и предлагать их для решения в других классах. Это очень хороший стимул, мера поощрения для составляющих задачи. Да и ученики относятся с большим интересом к решению задач, составленных школьником.

Задание, требующее от учащихся составления задач, может носить и некоторый творческий характер. Например, учитель спрашивает: «Какие данные нужно знать, чтобы определить количество обоев для оклейки стен в твоей комнате? Получи эти данные». Составление таких задач, которые можно назвать задачами-расчетами или задачами с практическим содержанием, чрезвычайно полезно для учащихся школы VIII вида, именно такие задачи готовят их к повседневной практической жизни, например: получить данные и рассчитать стоимость завтрака, обеда и ужина для одного человека, для семьи, состоящей из трех, четырех, пяти

человек, стоимость одежды ученика, подсчитать стоимость электричества, газа, коммунальных услуг, квартплаты и т. д.

Учащихся старших классов школы VIII вида необходимо учить заполнять и писать деловые документы, связанные с теми или иными расчетами. Например, написать доверенность, заполнить бланк на оплату за электроэнергию, газ, заполнить бланк на денежный перевод и т. д.

Все указанные выше приемы могут быть широко использованы при решении всех видов задач, как в младших, так и в старших классах школы VIII вида.




II. Методика решения простых арифметических задач.

Простой арифметической задачей называется задача, которая решается одним арифметическим действием.

Простые задачи являются составной частью сложных задач, а следовательно, формируя умение решать простые задачи, учитель готовит учащихся к решению сложных задач.

В школе VIII вида решаются задачи, раскрывающие конкретный смысл арифметических действий (I группа). Это задачи на нахождение суммы и на нахождение остатка (1-й класс), на нахождение произведения (суммы одинаковых слагаемых), на деление на равные части (3-й класс), на деление по содержанию (3-й класс).

Решаются также задачи, раскрывающие новый смысл арифметических действий. Это задачи, связанные с понятием разности и отношения (II группа):

  1. Увеличение и уменьшение числа на несколько единиц.

  1. Разностное сравнение чисел с вопросами «на сколько больше...», «на сколько меньше...».

  2. Увеличение и уменьшение числа в несколько раз.

  3. Краткое сравнение чисел или нахождение отношения чисел с вопросами: «Во сколько раз больше...», «Во сколько меньше...».

К задачам, раскрывающим зависимость между компонентами результатами арифметических действий (III группа), относятся задачи на нахождение неизвестного слагаемого, на нахождение не известного уменьшаемого, неизвестного вычитаемого. В школе VIII вида на каждом году обучения учащиеся знакомятся с новыми видами простых задач. Постепенное введение ил объясняется различной степенью трудности математических понятий, местом изучения тех арифметических действий, конкретный смысл которых они раскрывают.

Последовательность решения простых задач определена программой по математике школы VIII вида. Однако при выборе задач определенного вида учитель должен руководствоваться некоторыми методическими требованиями.

Сюжетные задачи составляются с однородными и неоднородными предметами, в них входят обобщающие слова.

Для иллюстрации задач нового вида, особенно в младших классах, используются предметные пособия, изображения предметов в виде трафаретов, рисунки, символы предметов и др. Однако исследования и наблюдения показывают, что учащиеся лучше понимают предметную ситуацию задачи, если они сами выполняют определенные операции с предметами или их изображениями или если задача инсценируется.

Вопрос записывается не полностью, а с помощью символов: круглая, квадратная или фигурная скобка символизирует сумму, а знак вопроса (?), что эта сумма неизвестна. Наконец, учитель учит конкретизировать содержание задачи, вскрывая зависимость между данными и искомыми с помощью различных форм краткой записи «У Маши два мяча. Учительница дала ей еще один мяч (учитель дает девочке один мяч). Сколько мячей стало у Маши?» Что я вам рассказала, дети? — спрашивает учитель. — Послушайте эту задачу еще раз. О чем эта задача? (О мячах.) Сколько мячей было у Маши? («У Маши было 2 мяча», — говорят ученики и показывают цифру 2.) Сколько мячей дала ей учительница? Покажите цифру. Что нужно узнать в задаче или что спрашивается в задаче? Повторим задачу еще раз. Теперь задачу надо решить, т. е. ответить на вопрос задачи. Какое действие надо сделать, чтобы узнать, сколько мячей стало у Маши?

Учитель выслушивает ответы учащихся. Учащиеся с помощью учителя отвечают: «Надо к двум мячам прибавить один мяч».

Запишем решение задачи так: 2+1=3.

Действие задачи записывается в виде математического выражения в середине строки, чтобы отличить эту запись от примера.

  • Что мы узнали? (У Маши стало 3 мяча.) Это ответ задачи.
    Учитель просит нескольких учеников повторить ответ задачи.

  • Решили ли мы эту задачу? (Решили.)

Учитель делает вывод: «В задаче спрашивалось, сколько мячей стало у Маши. Мы ответили на вопрос задачи, значит, решили задачу».Подводится итог работы: «Что мы сейчас решили? (Задачу.) Что сделали для решения задачи?»

Учитель обобщает ответы ребят и делает вывод: «Выбрали действие. Выполнили его. Сказали ответ»

По заданию учителя ученики повторяют данную задачу, решение и ответ.

Аналогично вводится задача на нахождение остатка.

При обучении решению задач на нахождение суммы одинаковых слагаемых (на нахождение произведения), на деление на равные части или на деление по содержанию следует опираться на понимание учащимися сущности арифметических действий умножения и деления. Например, предлагается задача: «Три девочки вышили по 2 салфетки каждая. Сколько всего салфеток вышили девочки?» После разбора содержания задачи, ее конкретизации с помощью 3 кукол, которым даются по 2 салфетки, или ее инсценировки с помощью учениц класса учащиеся подводятся к выбору действия. Учитель говорит: «Было 3 девочки (назвать имена девочек: Оля, Вера, Катя), каждая вышила по 2 салфетки (учитель дает каждой девочке по 2 салфетки). Как можно узнать, сколько всего салфеток вышили девочки?» Сначала задача решается сложением: 2 с.+ 2с.+2 с.=6 с. Затем, опираясь на знания учащихся о том, что умножение — это сумма одинаковых слагаемых, учитель выясняет, каким еще действием можно записать решение задачи. (Или: каким действием можно заменить нахождение суммы одинаковых слагаемых.) Решение записывается так: 2 с.хЗ=6 с.

После решения задач с опорой на предметы следует перейти к решению задач такого же вида с опорой на иллюстрацию (или символическое изображение предметов).

При решении задач на деление на равные части и деление по содержанию учитель также опирается на понимание учащимися конкретного смысла этих арифметических действий

После усвоения деления на равные части учащиеся знакомятся с практическим делением конкретного множества по содержанию.

III. Методика решения составных арифметических задач.

Составной или сложной арифметической задачей называется задача, которая решается двумя и большим числом арифметических действий. Решение составной задачи по сравнению с простой более затруднительно для школьников с нарушением интеллекта. Если при решении простой задачи ученик должен был установить зависимость между числовыми данными и, руководствуясь вопросом задачи, выбрать нужное действие, то в составной задаче (хотя бы в два действия) ученик должен либо получить недостающее третье данное, либо из трех числовых данных выбрать два и, учитывая отношения между ними, выбрать нужное действие. Получив промежуточный ответ, он должен, установив зависимость между ним и имеющимся в условии третьим числовым данным, а также руководствуясь главным вопросом задачи, выбрать нужное действие. Следовательно, чтобы решить сложную задачу, ученик должен провести цепь логических рассуждений и сделать умозаключения.

Подготовительная работа к решению составных задач должна представлять собой систему упражнений, приемов, целенаправленно ведущих учащихся к овладению решением составных задач.

К решению составных задач учитель может переходить тогда, когда убедится, что учащиеся овладели приемами решения простых задач, которые войдут в составную задачу, сами могут составить простую задачу определенного вида.

При решении составных задач учащиеся должны или к данным ставить вопросы, или к вопросу подбирать данные. Поэтому в подготовительный период, т. е. на протяжении всего первого года и в начале второго года обучения, следует предлагать учащимся задания: 1) к готовому условию подобрать вопрос; 2) по вопросу составить задачу, подобрав недостающие числовые данные. Эти умения пригодятся учащимся при решении составных задач.

Полезны решения таких пар задач, в которых вторая задача является продолжением первой, т. е. ответ первой простой задачи является данным второй простой задачи. Например: «В вазе лежало 5 красных и 7 желтых яблок. Сколько всего яблок в вазе?»; «В вазе лежало 12 яблок, 8 яблок съели. Сколько яблок осталось в вазе?»

Учащиеся решают каждую задачу отдельно. Решение задач сопоставляется. Учитель просит объяснить, почему первая задача решается сложением, а вторая — вычитанием. Обращается внимание учащихся на первое числовое данное второй задачи. Эта подготовительная работа необходима для того, чтобы сами учащиеся впоследствии научились составлять такие пары задач.

Полезным приемом является составление условия задачи на основе наблюдений операций над предметными совокупностями и подбор к этому условию вопроса. Например, учитель просит учащихся внимательно посмотреть, что он делает (кладет в корзину сначала 5 больших орехов, а потом еще 3 маленьких), и рассказать. Ученики рассказывают: «В корзину вы положили сначала 5 больших орехов, а потом 3 маленьких ореха». (Числовые данные можно записать на доске.) «Какой вопрос можно поставить к условию задачи? (Сколько всего орехов положили в корзину?) Повторите задачу».

Далее сами учащиеся включаются в предметно-практическую деятельность, и на основе выполнения действий составляются задачи. Сначала составляются задачи простые, а затем и составные. Например, учитель дает ученику задание: «В коробке лежат 4 карандаша. Володя положил в коробку еще 3 карандаша. Затем он отдал 5 карандашей Тане. Что сначала сделал Володя? (Положил в коробку карандаши.) Что потом сделал Володя? (Отдал карандаши Тане.) Сколько действий сделал Володя? Какие действия? Какие вопросы можно задать Володе? Составим задачу и решим ее».

Необходимо сопоставить решение простой и составной задач. Причем составная задача должна отличаться от простой только дополнительным числовым данным и вопросом. Например: «У мальчика было в альбоме 8 марок. Он положил туда еще 6 марок. Сколько всего марок стало в альбоме?»; «У мальчика в альбоме было 8 марок. Он положил туда еще 6 марок. 9 марок он подарил товарищу. Сколько марок осталось в альбоме?» Разбираются и решаются обе задачи. Решение задач с вопросами и ответами записывается.

Далее необходимо сопоставить решение и содержание простой и составной задач.

После решения составных задач (с тремя числами) с разнородными действиями на нахождение суммы и остатка предъявляются составные задачи, составленные из различных, ранее решавшихся видов простых задач: задачи на увеличение числа на несколько единиц и нахождение суммы и др.

Например: «Ребята посадили в первом ряду 8 елочек, а во втором на 4 елочки больше. Сколько всего елочек посадили ребята?» Нередко эту задачу учащиеся решают одним действием. Поэтому важно выяснить, почему эту задачу нельзя решить одним действием. Надо тщательно разобрать условие задачи, сделать рисунок или краткую запись условия, которые бы показали, что число елочек во втором ряду неизвестно, а поэтому сразу и нельзя узнать, сколько всего елочек посадили ребята.

Разбор задачи, как было показано выше, можно начинать от главного вопроса или от числовых данных.

Покажем рассуждения, которые надо провести, подводя учащихся к выбору действий от главного вопроса задачи: «Что нужно узнать в задаче? Какие елочки входят в число всех елочек? Можем ли сразу узнать, сколько всего елочек посадили ребята? Почему нет? Какого числа мы не знаем? Можно ли сейчас узнать, сколько елочек во втором ряду? Каким действием это можно сделать? Почему? Теперь мы знаем, сколько елочек в первом ряду, и узнали, сколько их во втором ряду. Можно ли теперь ответить на вопрос задачи? Каким действием? Почему? Решили ли мы задачу? Почему? Во сколько действий задача? Какое первое действие? Какое второе действие? Запишем решение задачи с пояснением».

Решение.

  1. 8 ел.+4 ел. = 12 елочек посадили ребята во втором ряду;

8 ел.+ 12 ел.=20 елочек посадили ребята.

Решение задачи учитель закрепляет с учащимися, задавая им вопросы: «Что означает число 12 елочек в ответе первого действия? Как получили это число? Почему сделали сложение? Что показывает число 20 елочек? Сколько действий нужно было сделать, чтобы ответить на вопрос задачи? Почему сразу одним действием нельзя было ответить на вопрос задачи? Чего мы не знали?»

При решении составных задач учащихся следует научить общим приемам работы над задачей: умению анализировать содержание задачи, выделяя известные данные, искомое (т. е. устанавливая, что нужно узнать в задаче), определять, каких данных недостает для ответа на главный вопрос задачи (т. е. устанавливая промежуточные искомые). Такому анализу содержания задачи во многом способствует умение учащихся конкретизировать его с помощью предметов, иллюстраций, краткой записи, схем и чертежей. Учитель должен научить учащихся приемам решения задач, показать, что решение любой задачи складывается из ряда этапов: работы над содержанием, составления плана и выбора действий выполнения действий и проверки правильности решения.

Работа с карточками-заданиями используется широко и при ознакомлении учащихся с решением задачи нового вида. Когда учащиеся постепенно начнут усваивать решение задачи данного вида, карточки-задания следует использовать частично, т. е. не вести подробных рассуждений. Иногда ученику достаточно прочитать задачу, и ход решения ему становится ясен. Другим ход решения становится доступным после изображения содержания задачи в краткой форме записи. Для какой-то части учащихся дополнительно к этому нужно поставить один-два наводящих вопроса. В каждом отдельном случае учитель должен подходить дифференцированно к учащимся, учитывая их возможности и способности.

Среди составных арифметических задач большое место и школе VIII вида занимают задачи, решаемые приведением к едп нице. В содержание таких задач входят две величины, связанные пропорциональной зависимостью. При этом даются два значения одной величины и одно из соответствующих значений другой величины, а определить нужно второе значение этой величины. Третья величина, связанная с двумя данными, остается без изменения. Например, в задаче: «За 3 булочки заплатили 6 р. Купили 5 таких булочек. Сколько будет стоить покупка?» — даны два значения количества (количество булочек 3 и 5), одно значение стоимости. Второе значение стоимости неизвестно (искомое). Цена постоянная.

Подготовительная работа к решению этих задач начинается с решения простых задач на нахождение суммы одинаковых слагаемых (или на нахождение произведения), на деление на равные части, тесно связанные с задачами на прямое приведение к единице.

С задачами на нахождение стоимости по цене и количеству учащиеся знакомятся в 3-м классе. Можно начать работу над такими задачами, устраивая игры в магазин. На витрине магазина разложены товары. Это могут быть учебные принадлежности, книги, игрушки с указанием цены. Учитель обращает внимание на термин «цена». Он просит назвать цены ряда товаров. Ученику предлагается выбрать предмет для покупки и купить не один, а два или три таких предмета. На основе этого составляется задача, например: «Цена одной тетради 2 р. Валя купила 3 тетради. Сколько денег уплатила Валя за все тетради?»

Учитель ставит вопросы: «Что известно в задаче? Что показывает число 2р.? (Цену одной тетради.) Что показывает число 3 тетради? (Количество купленных тетрадей.) Что неизвестно в задаче?» (Стоимость всей покупки.) (Слова «цена», «количество», «стоимость» учащиеся могут и не называть. Их называет в этом случае учитель.)

При разборе задачи учитель интонацией голоса подчеркивает слова «цена», «количество», «стоимость». Задача иллюстрируется.

Чтобы учащиеся лучше запомнили слова «цена», «количество», «стоимость», а также чтобы нагляднее показать зависимость между величинами, целесообразно составить таблицу, в которую необходимо вписать эти величины.

Составляются и решаются аналогичные задачи на покупку других предметов. Учитель подводит учащихся к обобщению, что по цене и количеству можно узнать стоимость, если цену товара умножить на количество.

Цена

Количество

Стоимость

2 Р.

3 тетради

?


На следующий год (4-й класс) вводятся те же задачи на зависимость между величинами, но неизвестными являются в них либо цена, либо количество. Учащиеся сами должны научиться составлять таблицы при решении подобных задач и вписывать в них числовые данные. Искомые могут быть обозначены либо знаком вопроса (?), либо буквой х.

Цена

Количество

Стоимость

2 р.

3 булочки

5

?

4 булочки

8 р.

2 р.

)

16 р.


Сначала решается задача на определение стоимости по цене и количеству. Рассуждение проводится так: «Какова цена 1 булочки? Запишем под словом «цена» 2 р. Сколько булочек купили? (Какое количество булочек?) Под словом «количество» запишем 3 булочки. Что нужно узнать в задаче? (Стоимость булочек.) Как узнать стоимость, если известны цена и количество? (Цену умножить на количество: 2 р. хЗ=6 р.)»

Далее учащиеся знакомятся с задачей вида: «Купили 4 булочки за 8 р. Сколько денег заплатили за 1 булочку?»

Рассуждаем так: «Что известно в задаче? Что означает число 4 булочки? (Количество.) Что означает число 8 р.? (Стоимость.) Что нужно узнать? (Цену 1 булочки.) Каким действием можно узнать цену 1 булочки?» (Если учащиеся не ответят, что нужно 8 р.:4, то рассуждение проводится так: «4 булочки стоят 8 р. Дешевле или дороже стоит 1 булочка? Во сколько раз дешевле 1 булочка, чем 4 булочки? Значит, какое действие надо сделать?»)
Решив еще несколько задач, учащиеся подводятся к выводу: «Чтобы определить цену, нужно стоимость разделить на количество».

Так же учащиеся учатся решать задачи на определение количества по стоимости и цене. Решение таких задач готовит учащихся к знакомству с задачами на прямое приведение к единице, например: «3 тетради стоят 9 р. Сколько стоят 5 таких тетрадей?»

Разбор этой задачи лучше начинать с вопроса задачи: «Можно ли сразу узнать, сколько стоят 5 тетрадей? Почему нельзя? Что нам неизвестно? Можно ли узнать из условия задачи, сколько стоит одна тетрадь? Каким действием это можно узнать? Почему делением? Когда будем знать цену одной тетради, можно ли узнать стоимость 5 тетрадей? Каким действием? Почему? А какой главный вопрос задачи? Ответили ли мы на главный вопрос задачи? Какой первый вопрос задачи? Какой второй вопрос задачи? Запишем решение задачи с вопросами».

Решение
1. Сколько стоит одна тетрадь?

9 р.:3=3 р.

2. Сколько стоят 5 тетрадей?

3 р.х!5 р. Ответ. 15 р. стоят 5 тетрадей.

Чтобы учащиеся более осознанно решали сложные задачи, полезно сравнивать их с простыми задачами. Например, только что решенную задачу следует сравнить с такой простой задачей: «1 тетрадь стоит 3 р. Сколько стоят 5 таких же тетрадей?»

«Что нужно было узнать во второй задаче? Что нужно было узнать в первой задаче? Почему во второй задаче сразу ответили на вопрос задачи, а в первой задаче надо было сделать еще одно действие?»

Если учащиеся затрудняются ответить на этот вопрос, то учитель спрашивает: «Чего мы не знали в первой задаче? Без какого числа нельзя было ответить на вопрос задачи?»

Можно рассмотреть задачи на обратное приведение к единице, например: «6 тетрадей стоят 12 р. Сколько тетрадей можно купить на 24 р.?»

Предварительно решаются задачи на нахождение количества по стоимости и цене, например: «1 тетрадь стоит 2 р. Сколько тетрадей можно купить на 24 р.?»

При решении задачи на обратное приведение к единице рассуждение можно проводить от данных задачи, например: «6 тетрадей стоят 12 р. Что отсюда можно узнать? (Цену одной тетради.) Каким действием узнаем цену одной тетради? Если знаем цену 384

тетради и стоимость всех тетрадей (24 р.), то что отсюда можем узнать? (Количество тетрадей.) Каким действием? Какой первый вопрос задачи? Какое первое действие? Какой второй вопрос задачи? Какое второе действие? Решение задачи запишем так: сначала план, а потом действия».

План

Решение

  1. 12 р.:6=2 р.

  2. 24 р.:2 р=12 (тетрадей)

  1. Сколько стоит одна тетрадь?

  2. Сколько тетрадей купили? Ответ. Купили 12 тетрадей.

Использование иллюстративного изображения условий обеих задач, а затем запись условий в таблицы, как показывает опыт, во многом облегчает для учащихся решение таких задач.

Цена

Количество

Стоимость

Одинаковая

3 т.

X

6 р.

24 р.







Цена

Количество

Стоимость

Одинаковая

3 т.

6 р.

Задачи на прямое и обратное приведение к единице могут отражать зависимость между скоростью, временем и расстоянием; между расходом материала на одно изделие, количество изделий и общим расходом материала; между массой одного предмета, количеством предметов и общей массой; между емкостью одного сосуда, количеством сосудов и общей емкостью и т. д.




IV. Задачи на зависимость между скоростью,

временем и расстоянием.

Прежде чем решать такие задачи, необходимо познакомить учащихся с величиной скорость, уточнить представление о времени и единицах измерения времени, о длине или расстоянии и единицах измерения длины, вспомнить известные им расстояния между городами, селами, расстояние от школы до определенного объекта, и в каких мерах длины измеряется расстояние. Пройти с учащимися расстояние длиной 1 км и установить, сколько времени затратили на этот путь. Установить зависимость между расстоянием и временем для его прохождения. А если это расстояние человек проходит не пешком, а едет на велосипеде, на лыжах, на машине, то больше или меньше он затратит времени? Если путь, который преодолевает человек одинаковый, то от чего зависит затрата времени? Перед учениками поставлена проблема. Готовы ли они ее решить? Далее учитель знакомит их с новой величиной — скоростью. Учащиеся в игре, на экскурсии должны наблюдать скорости движущихся предметов, людей, транспорта.

Далее предлагается задача: «Пешеход за 1 ч проходит 5 км. Сколько километров он пройдет за 3 ч, если будет двигаться с той же скоростью?»

Целесообразно запись условия задачи дать в таблице, чтобы учащиеся могли лучше понять зависимость между тремя величинами: скоростью, временем и расстоянием.

Условие задачи следует учить изображать чертежом: скорость обозначать стрелкой, а расстояние — отрезком.

Скорость

Время

Расстояние

5 км в час

3 ч

?

При решении сложных задач на движение пункты отправления или встречи движущихся объектов лучше обозначать точками, например: «Из двух городов навстречу друг другу вышли два поезда. Один шел со скоростью 75 км в час, а другой 68 км в час. Через 3 ч они встретились. Каково расстояние между городами?»

Прежде чем приступить к решению данной задачи, надо продемонстрировать движение «навстречу друг другу», выяснить, понимают ли учащиеся это выражение. Затем получить ответы на вопросы: «Одинакова ли скорость у поездов? Одинаковое ли расстояние пройдут поезда до встречи? Какой поезд за 3 ч пройдет путь больше и почему? К какому из городов ближе произойдет встреча и почему?» После этого учащиеся должны сделать чертеж. Так как задачу можно решить двумя способами, учитель сначала рассматривает путь решения, который предлагают учащиеся.

Если ученики самостоятельно не могут решить задачу даже когда сделан чертеж, то учитель ставит ряд наводящих вопросов, которые помогут учащимся выбрать путь решения задачи: «Можно ли узнать путь первого поезда до встречи? Почему? Каким действием? Можно ли узнать путь второго поезда до встречи? Почему? Каким действием? Можно ли теперь узнать расстояние между городами? Какой первый вопрос задачи? Какой второй вопрос задачи? Какой третий вопрос задачи?»

Рассуждения при решении этой задачи можно провести и иначе, объяснив учащимся, что сначала можно определить «скорость сближения», т. е. определить, на сколько километров в час приближаются поезда друг к другу. Для этого надо сложить скорости первого и второго поездов (75 км/ч+68 км/ч=143 км/ч). 143 км/ч — это «скорость сближения» двух поездов. Если «скорость сближения» 143 км/ч умножить на время движения поездов до встречи (3 ч), получим расстояние между городами: 143 км/чх3=429 км.

Решение с пояснением

  1. 75 км/ч+68 км/ч=143 км/ч — «скорость сближения».

  2. 143 км/ч-3=429 км — расстояние между городами.
    Ответ. Расстояние между городами 429 км.

Оба способа решения задачи сравниваются.

Учитель обращает внимание на то, что, хотя задача решена разными способами, ответы одинаковы. Это свидетельствует о правильности решения задачи.

При возможности решения задачи двумя способами выбирать для решения следует более рациональный способ.

Задачи на пропорциональное деление вводятся в 7-м классе. В школе VIII вида решаются задачи с двумя переменными величинами, связанными пропорциональной зависимостью и одной постоянной величиной. Это задачи вида:

  1. Купили два отреза материи по одинаковой цене. В одном
    отрезе было 8 м материи, а в другом 5 м. За всю материю
    заплатили 117 р. Сколько стоит каждый отрез?

  2. Купили по одинаковой цене 2 отреза материи, всего 13 м, и
    уплатили 117 р. Один отрез стоил 72 р., а другой 45 р. Сколько
    метров материи было в каждом отрезе?

Перед решением задач на пропорциональное деление надо решить ряд задач на приведение к единице, затем тщательно разобрать содержание предложенной задачи, с тем чтобы учащиеся хорошо представили себе данные и искомое задачи. Содержание задачи можно записать в таблицу, это поможет учащимся лучше уяснить зависимость между данными и искомым.

Цена

Количество

Стоимость

Одинаковая




8 м

5 м

}П7р.

Теперь учитель ставит ряд вопросов по содержанию задачи:.) «Сколько отрезов материи купили? Одинаковы ли были отрезы? Что сказано о цене 1 м материи? Известна ли цена 1 м материи? Сколько стоит вся материя? Что нужно узнать? Что означает выражение «каждый отрез»? Одинакова ли стоимость каждого отреза? Какой отрез будет стоить дороже? Почему?»

После разбора содержания задачи следует начать поиск решения задачи, начиная от главного вопроса: «Можно ли сразу ответить на вопрос: сколько стоил первый отрез? Почему нельзя? Можно ли сразу узнать цену 1 м материи? Почему нельзя? Чего мы еще не знаем? Можно ли сразу узнать количество метров материи в двух отрезах? Почему можно? Каким действием? Значит, какой первый вопрос задачи? Какое первое действие? Если мы будем знать количество материи, а стоимость мы знаем, то что можно узнать? Значит, какой второй вопрос задачи? Какое второе действие? Когда мы узнаем цену материи, то что можно узнать дальше, каким действием? Что будем узнавать потом? Во сколько действий решается задача?»

Решение задачи записывается с вопросами или записывается каждое действие и поясняется.

Аналогично вводится решение задач другого вида.

Выработка обобщенного способа решения задач данного вида обеспечивается многократным решением задач с разнообразными фабулами, решением готовых и составленных самими учащимися задач, сравнением задач данного вида с ранее решавшимися видами задач и т.д.









Литература.


  1. Перова М.Н. Методика преподавания математики в специальной (коррекционной) школе VIII вида. - М.: Просвещение, 2003.

  2. Программы специальных (коррекционных) образовательных учреждений VIII вида. : 5-9 кл.: В 2 сб. Сб. 1 / В. В. Воронкова [и др.] ; ред. В. В. Воронкова. - М. : Владос, 2010. - 223 с.

  3. Терехова И.Г. Обучение математике в старших классах вспомогательной школы (в помощь учителю). Алматы, 1992.
















37



Краткое описание документа:

Арифметические задачи в курсе математики в школе VIII вида занимают значительное место. Почти половина времени на уроке математики отводится решению задач. Это объясняется больше коррекционно-воспитательной и образовательной ролью, которую они играют при обучении школьников с нарушением интеллекта.

В процессе решения арифметических задач учащиеся учат планировать и контролировать свою деятельность, овладеваютприемами самоконтроля (проверка задачи, прикидка ответа, решение задачи разными способами и т. д.), у них воспитывается настойчивость, воля, развивается интерес к поиску решения задачи.


Автор
Дата добавления 25.11.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров1228
Номер материала ДВ-191742
Получить свидетельство о публикации

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх