Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Реферат по математике на тему "Великая теорема Ферма"
  • Математика

Реферат по математике на тему "Великая теорема Ферма"

библиотека
материалов























«Великая теорема Ферма»

hello_html_8bae4db.jpg

















2016

Великая теорема Ферма

https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/Diophantus-II-8-Fermat.jpg/200px-Diophantus-II-8-Fermat.jpg

Издание 1670 года «Арифметики» Диофанта включает комментарий Ферма, в частности его «последнюю теорему» (Observatio Domini Petri de Fermat)

Великая теорема Ферма (или Последняя теорема Ферма) — одна из самых популярных теорем математики. Её условие формулируется просто, на «школьном» арифметическом уровне, однако доказательство теоремы искали многие математики более трёхсот лет. Доказана в 1994 году Эндрю Уайлсом.

Формулировка

Теорема утверждает, что:

Для любого натурального числа n>2 уравнение

a^n+b^n=c^n\,\!

не имеет решений в целых ненулевых числах a, b, c.

Встречается более узкий вариант формулировки, утверждающий, что это уравнение не имеет натуральных решений. Однако очевидно, что если существует решение для целых чисел, то существует и решение в натуральных числах. В самом деле, пусть a, b, c — целые числа, дающие решение уравнения Ферма. Если n чётно, то |a|, |b|, |c| тоже будут решением, а если нечётно, то перенесём все степени отрицательных значений в другую часть уравнения, изменив знак. Например, если бы существовало решение уравнения a^3 + b^3 = c^3 и при этом a отрицательно, а прочие положительны, то b^3 = c^3 + (-a)^3, и получаем натуральные решения c, |a|, b. Поэтому обе формулировки эквивалентны.

Обобщениями утверждения теоремы Ферма являются опровергнутая гипотеза Эйлера и открытая гипотеза Ландера — Паркина — Селфриджа.

История

Для случая n=3 эту теорему в X веке пытался доказать ал-Ходжанди, но его доказательство не сохранилось.

В общем виде теорема была сформулирована Пьером Ферма в 1637 году на полях «Арифметики» Диофанта. Дело в том, что Ферма делал свои пометки на полях читаемых математических трактатов и там же формулировал пришедшие на ум задачи и теоремы. Теорему, о которой ведётся речь, он записал с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы его можно было поместить на полях книги:

«Наоборот, невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашёл этому поистине чудесное доказательство, но поля книги слишком узки для него».

https://upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Diophantus_VI_338_339.jpg/300px-Diophantus_VI_338_339.jpg

Доказательство самого Ферма для случая n=4 в сорок пятом комментарии к «Арифметике» Диофанта

Ферма приводит только доказательство, как решение задачи, сводимой к четвёртой степени теоремы n=4, в сорок пятом комментарии к «Арифметике» Диофанта и в письме к Каркави (август 1659 года). Кроме этого, Ферма включил третью степень теоремы n=3 в список задач, решаемых методом бесконечного спуска.

Эйлер в 1770 году доказал теорему для случая n=3Дирихле и Лежандр в 1825 — для n=5Ламе — для n=7Куммер показал, что теорема верна для всех простых n, меньших 100, за возможным исключением т. н.иррегулярных простых 37, 59, 67.

Над полным доказательством Великой теоремы работало немало выдающихся математиков и множество дилетантов-любителей; считается, что теорема стоит на первом месте по количеству некорректных «доказательств». Тем не менее, эти усилия привели к получению многих важных результатов современной теории чиселДавид Гильберт в своём докладе «Математические проблемы» на II Международном конгрессе математиков (1900) так отозвался об этой проблеме:

Проблема доказательства этой неразрешимости являет разительный пример того, какое побуждающее влияние на науку может оказать специальная и на первый взгляд малозначительная проблема. Ибо, побуждённый задачей Ферма, Куммер пришёл к введению идеальных чисел и к открытию теоремы об однозначном разложении чисел в круговых полях на идеальные простые множители — теоремы, которая теперь, благодаря обобщениям на любую алгебраическую числовую область, полученным Дедекиндом и Кронекером, является центральной в современной теории чисел и значение которой выходит далеко за пределы теории чисел в область алгебры и теории функций.

В 1908 году немецкий любитель математики Вольфскель завещал 100 000 немецких марок тому, кто докажет теорему Ферма. Однако после войны премия обесценилась.

В 1980-х годах появился новый подход к решению проблемы. Из гипотезы Морделла, доказанной Фальтингсом в 1983 году, следует, что уравнение a^n+b^n=c^n при n>3 может иметь лишь конечное число взаимно простых решений.

Последний, но самый важный, шаг в доказательстве теоремы был сделан Уайлсом в сентябре 1994 года. Его 130-страничное доказательство было опубликовано в журнале «Annals of Mathematics». Доказательство основано на предположении немецкого математика Герхарда Фрая о том, что Великая теорема Ферма является следствием гипотезы Таниямы — Симуры (это предположение было доказано Кеном Рибетом при участии Ж.П. Серра).

Первый вариант своего доказательства Уайлс опубликовал в 1993 году (после 7 лет напряжённой работы), но в нём вскоре был обнаружен серьёзный пробел, который с помощью Ричарда Лоуренса Тейлора удалось достаточно быстро устранить. В 1995 году был опубликован завершающий вариант.

Колин Мак-Ларти отметил, что доказательство Уайлса может быть упрощено, чтобы не предполагать существования так называемых «больших кардиналов».

«Ферматисты»

https://upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Fermat_Last_Theorem_%22proof%22_registered_by_Ukraine_officials.jpg/200px-Fermat_Last_Theorem_%22proof%22_registered_by_Ukraine_officials.jpg

Авторское свидетельство, выданное Министерством образования и науки Украины на доказательство теоремы Ферма Г. А. Середкину и Л. В. Шаповаловой

Простота формулировки теоремы Ферма (доступная в понимании даже школьнику), а также сложность единственного известного доказательства (или неведение о его существовании), вдохновляют многих на попытки найти другое, более простое, доказательство. Людей, пытающихся доказать теорему Ферма элементарными методами, называют «ферматистами» или «ферматиками». Ферматисты зачастую не владеют основами математической культуры и допускают ошибки в арифметических действиях или логических, хотя некоторые представляют весьма изощрённые «доказательства», в которых трудно найти ошибку.

Доказывать теорему Ферма в среде любителей математики было настолько популярно, что в 1972 году журнал «Квант», публикуя статью о теореме Ферма, сопроводил её следующей припиской:

«

Редакция «Кванта» со своей стороны считает необходимым известить читателей, что письма с проектами доказательств теоремы Ферма рассматриваться (и возвращаться) не будут. »


Немецкому математику Эдмунду Ландау очень докучали «ферматисты». Чтобы не отвлекаться от основной работы, он заказал несколько сот бланков со следующим текстом:

«

Уважаемый …! Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на странице … в строке …

»

Находить ошибку и заполнять пробелы в бланке он поручал своим аспирантам.

Примечательно, что отдельные ферматисты добиваются публикации своих (неверных) «доказательств» в ненаучной прессе, которая раздувает их значение до научной сенсации. Впрочем, иногда такие публикации появляются и в уважаемых научных изданиях, как правило, с последующими опровержениями. Среди других примеров:

  • Брошюра В. И. Будкина, изданная в Ярославле под названием «Методика познания „истины“. Доказательство Великой теоремы Ферма» (47 с., 5000 экз., Верхне-Волжское книжное издательство, 1975).

  • Книга Л. Ш. Райхеля «Великая теорема», изданная в Ленинграде в 1990 году.

  • Свидетельство о регистрации авторских прав на произведение «доказательство теоремы Ферма», выданное Министерством образования и науки Украины Л. В. Шаповаловой и Г. А. Середкину. Следует пояснить, что этот документ не удостоверяет каким-либо образом правильность доказательства, а лишь регистрирует авторские права на поданный в Министерство образования и науки печатный труд; на это министерство возложена обязанность ведения реестра таких свидетельств.

Теорема Ферма в культуре и искусстве

Великая теорема Ферма стала символом труднейшей научной проблемы и в этом качестве часто упоминается в беллетристике. Далее перечислены некоторые произведения, в которых теорема не просто упомянута, но является существенной частью сюжета или идеологии произведения.

  • В повести Е. Велтистова «Победитель невозможного» друг Сыроежкина и Электроника Вова Корольков в качестве свободного задания по математике доказал Великую теорему Ферма.

  • В телесериале «Звёздный Путь» капитан космического корабля Жан-Люк Пикар был озадачен разгадкой Великой теоремы Ферма во второй половине XXIV века. Таким образом, создатели фильма предполагали, что решения у Великой теоремы Ферма не будет в ближайшие 400 лет. Серия «Рояль» с этим эпизодом была снята в 1989 году, когда Эндрю Уайлс был в самом начале своих работ. В действительности решение было найдено всего спустя 5 лет.

  • В рассказе Артура Порджеса «Саймон Флэгг и дьявол» профессор Саймон Флегг обращается за доказательством теоремы к дьяволу. По этому рассказу снят игровой научно-популярный фильм «Математик и чёрт» (СССР, 1972, производство Центрнаучфильм, творческое объединение «Радуга», режиссёр Райтбурт).

  • В рассказе Кира Булычева «Мечта заочника» студент-заочник Гаврилов приходит к профессору Минцу и приносит купленную курсовую работу, в которой приводится доказательство теоремы, с просьбой объяснить, что он написал.

  • В посвящённой Хэллоуину 1995 года серии «Симпсонов» двумерный Гомер Симпсон случайно попадает в третье измерение. Во время его путешествия в этом странном мире в воздухе парят геометрические тела и математические формулы, включая равенство 1782^{12}+1841^{12}=1922^{12}. Калькулятор с точностью не более 9 значащих цифр подтверждает это равенство:

178212 + 184112 = 2541210258614589176288669958142428526657 ≈ 254121026·1031,

              192212 = 2541210259314801410819278649643651567616 ≈ 254121026·1031.

Тем не менее, даже без вычисления точных значений легко видеть, что равенство неверно: левая часть — нечётное число, а правая часть — чётное.

  • В первом издании «Искусства программирования» Дональда Кнута теорема Ферма приведена в качестве упражнения с математическим уклоном в самом начале книги и оценена максимальным числом (50) баллов, как «исследовательская проблема, которая (насколько это было известно автору в момент написания) ещё не получила удовлетворительного решения. Если читатель найдет решение этой задачи, его настоятельно просят опубликовать его; кроме того, автор данной книги будет очень признателен, если ему сообщат решение как можно быстрее (при условии, что оно правильно)». В третьем издании книги это упражнение уже требует знаний высшей математики и оценивается лишь в 45 баллов.

  • В книге Стига Ларссона «Девушка, которая играла с огнём» главная героиня Лисбет Саландер, обладающая редкими способностями к аналитике и фотографической памятью, в качестве хобби занята доказательством Великой теоремы Ферма, на которую она наткнулась, читая фундаментальный труд «Измерения в математике», в котором приводится и доказательство Эндрю Уайлса. Лисбет не хочет изучать готовое доказательство, а главным интересом становится поиск собственного решения. Поэтому всё своё свободное время она посвящает самостоятельному поиску «замечательного доказательства» теоремы великого француза, но раз за разом заходит в тупик. В конце книги Лисбет находит доказательство, которое не только совершенно отлично от предложенного Уайлсом, но и является настолько простым, что сам Ферма мог бы его найти. Однако, после ранения в голову она его забывает, и Ларссон не приводит никаких подробностей этого доказательства.

  • Мюзикл «Последнее танго Ферма», изданный институтом Клэя, создан в 2000 году Дж. Розенблумом и Дж. С. Лессер по мотивам реальной истории Эндрю Уайлса. Главный герой по имени Дэниел Кин завершает доказательство теоремы, а дух самого Ферма старается ему помешать.

  • За несколько дней до своей смерти Артур Кларк успел отрецензировать рукопись романа «Последняя Теорема», над которой он трудился в соавторстве с Фредериком. Книга вышла уже после смерти Кларка.

  • В рассказе Натальи Дарьяловой «Великая и загадочная» сюжет строится на теореме Ферма. Рассказывается о том, как молодой человек, будучи студентом, занялся теоремой Ферма, впоследствии стал математиком, получил несколько важных научных результатов, но совершенно загубил свою личную жизнь.

  • В романе П. А. Загребельного «Разгон» скромный преподаватель математики из Одессы сумел доказать теорему, через некоторое время стал академиком и возглавил очень серьезное киевское НПО, занимающееся созданием электронно-вычислительных систем.

  • А. П. Казанцев в романе «Острее шпаги» в 1983 году предложил оригинальную версию отсутствия доказательства самого Пьера Ферма.

Литература

На русском

На английском

Автор
Дата добавления 24.01.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров361
Номер материала ДВ-372835
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх