Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Реферат по математике по теме;"Правильные и полуправильные многогранники"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Реферат по математике по теме;"Правильные и полуправильные многогранники"

библиотека
материалов

hello_html_2a50666d.jpg

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ПРОФЕССИОНАЛНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ

ГОРОДА

МОСКВЫ

КОЛЛЕДЖ ПОЛИЦИИ”



Реферат

На тему: “Правильные и полуправильные многогранники





Выполнил:

Курсант 111 взвода

Кайбелев И.И


Преподаватель

Зайцева О.Н










Москва

2016



Содержание



Введение........................................................................3

Правильные многогранники........................................4

Правильный икосаэдр.…………................................. 5

Куб.……… ..........….….................................................6

Правильный тетраэдр.................................................. 7

Полуправильные многогранники………….……...…8

Додекаэдро-икосаэдрическая доктрина.………..........................................................18


Роль икосаэдра в развитии математики.………......................................................21


Правильные многогранники вокруг нас....................23


Заключение………….……..……………………..…..27


Список Литературы………….………………....……28






















Введение.


Человек проявляет интерес к правильным многогранникам на протяжении всей своей сознательной деятельности – от двухлетнего ребенка, играющего деревянными кубиками, до зрелого математика, наслаждающегося чтением книг о многогранниках. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие – в виде вирусов (которые можно рассмотреть с помощью электронного микроскопа). Пчелы строили шестиугольные соты задолго до появления человека, а в истории цивилизации создание многогранных тел (подобных пирамидам) наряду с другими видами пластических искусств уходит в глубь веков.

Мой реферат посвящен теме правильных и полуправильных многогранников. Их изучали Теэтет, Платон, Евклид, Гипсикл и Папп. Также и нас эти удивительные тела не оставили равнодушной. Ведь их форма – образец совершенства!

Сколько всего правильных многогранников? Какими особенностями они обладают? Как изготовить модель какого-либо правильного многогранника? Где можно встретить эти тела? Ответить на эти и многие другие вопросы и является целью нашей работы.

















Правильные многогранники

Октаэдр

́Октаэдр — один из пяти выпуклых правильных многогранников, так называемых Платоновых тел.

Октаэдр имеет 8 треугольных граней, 12 рёбер, 6 вершин, в каждой его вершине сходятся 4 ребра.

Свойства октаэдра

Октаэдр можно вписать в тетраэдр, притом четыре из восьми граней октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести ребер тетраэдра.

Октаэдр можно вписать в куб, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.

В октаэдр можно вписать куб, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра.

Правильный октаэдр имеет симметрию Oh, совпадающую с симметрией куба.

Октаэдр в природе

Многие природные кубические кристаллы имеют форму октаэдра. Это алмаз, хлорид натрия, перовскит, оливин, флюорит, шпинель.

Форму октаэдра имеют межатомные пустоты (поры) в плотноупакованных структурах чистых металлов (никеле, меди, магнии, титане, лантане и многих других) и ионных соединений (хлорид натрия, сфалерит, вюрцит и др.) .

hello_html_1512317f.jpg

Правильный икосаэдр

Икосаэдр  — правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12. Икосаэдр имеет 59 звёздчатых форм.

Свойства

Икосаэдр можно вписать в куб, при этом шесть взаимно перпендикулярных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба

В икосаэдр может быть вписан тетраэдр, так что четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра.

Икосаэдр можно вписать в додекаэдр, при этом вершины икосаэдра будут совмещены с центрами граней додекаэдра.

В икосаэдр можно вписать додекаэдр с совмещением вершин додекаэдра и центров граней икосаэдра.

Усечённый икосаэдр может быть получен срезанием 12 вершин с образованием граней в виде правильных пятиугольников. При этом число вершин нового многогранника увеличивается в 5 раз (12×5=60), 20 треугольных граней превращаются в правильные шестиугольники (всего граней становится 20+12=32), а число рёбер возрастает до 30+12×5=90.

Собрать модель икосаэдра можно при помощи 20 тетраэдров.

Невозможно собрать икосаэдр из правильных тетраэдров, так как радиус описанной сферы вокруг икосаэдра, соответственно и длина бокового ребра (от вершины до центра такой сборки) тетраэдра меньше ребра самого икосаэдра.



hello_html_m3094ab33.jpg

Куб

Куб или правильный гексаэдр — правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы.

Свойства куба

Четыре сечения куба являются правильными шестиугольниками — эти сечения проходят через центр куба перпендикулярно четырём его главным диагоналям.

В куб можно вписать тетраэдр двумя способами. В обоих случаях четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба и все шесть рёбер тетраэдра будут принадлежать граням куба. В первом случае все вершины тетраэдра принадлежат граням трехгранного угла, вершина которого совпадает с одной из вершин куба. Во втором случае попарно скрещивающиеся ребра тетраэдра принадлежат попарно противолежащим граням куба. Такой тетраэдр является правильным, а его объём составляет 1/3 от объёма куба.

В куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.

Куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра. В куб можно вписать икосаэдр, при этом шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра — внутри куба. Все двенадцать вершин икосаэдра будут лежать на шести гранях куба.



hello_html_m14b8bb61.jpg

Правильный додекаэдр

Додекаэдр — двенадцатигранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников.Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра). Сумма плоских углов при каждой из 20 вершин равна 324°. Додекаэдр имеет три звёздчатые формы.

Свойства

В додекаэдр можно вписать куб так, что стороны куба будут диагоналями додекаэдра. В додекаэдр можно вписать пять кубов. Если заменить пятиугольные грани додекаэдра плоскими пятиугольными звездами так, что исчезнут все ребра додекаэдра, то получим пространство пяти пересекающихся кубов. Додекаэдр как таковой исчезнет. Вместо замкнутого многогранника появится открытая геометрическая система пяти ортогональностей. Или симметричное пересечение пяти трехмерных пространств.

hello_html_m3b22d76f.jpg



Правильный тетраэдр

Тетраэдр — простейший многогранник, гранями которого являются четыре треугольника. У тетраэдра 4 грани, 4 вершины и 6 рёбер.

Свойства тетраэдра

Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед.

Все медианы тетраэдра пересекаются в одной точке, которая делит их в отношении 3:1, считая от вершины (теорема Коммандино). В этой же точке пересекаются и бимедианы тетраэдра, которые делятся ею пополам.

Плоскость, проходящая через середины двух скрещивающихся рёбер тетраэдра, делит его на две равные по объёму части.

Тетраэдры в живой природе



Тетраэдр из грецких орехов

Некоторые плоды, находясь вчетвером на одной кисти, располагаются в вершинах тетраэдра, близкого к правильному. Такая конструкция обусловлена тем, что центры четырёх одинаковых шаров, касающихся друг друга, находятся в вершинах правильного тетраэдра. Поэтому похожие на шар плоды образуют подобное взаимное расположение. Например, таким образом могут располагаться грецкие орехи.

hello_html_m166af34e.jpg



Полуправильные многогранники

Известно еще множество совершенных тел, получивших название полуправильных многогранников или Архимедовых тел. У них также все многогранные углы равны и все грани – правильные многоугольники, но несколько разных типов. Существует 13 полуправильных многогранников, открытие которых приписывается Архимеду.

Архимед (287 г. до н.э. – 212 г. до н.э)

Множество Архимедовых тел можно разбить на несколько групп. Первую из них составляют пять многогранников, которые получаются из Платоновых тел в результате их усечения. Усеченное тело – это тело с отрезанной верхушкой. Для Платоновых тел усечение может быть сделано таким образом, что и получающиеся новые грани и остающиеся части старых будут правильными многоугольниками. Таким путем могут быть получены пять Архимедовых тел: усеченный тетраэдр, усеченный гексаэдр (куб), усеченный октаэдр, усеченный додекаэдр и усеченный икосаэдр (Рис. 2).



Рисунок 2. Архимедовы тела: (а) усеченный тетраэдр, (б) усеченный куб, (в) усеченный октаэдр, (г) усеченный додекаэдр, (д) усеченный икосаэдр

В своей Нобелевской лекции американский ученый Смолли, один из авторов экспериментального открытия фуллеренов, говорит об Архимеде (287-212 гг. до н.э.) как о первом исследователе усеченных многогранников, в частности, усеченного икосаэдра, правда, оговариваясь, что возможно Архимед присваивает себе эту заслугу и, возможно, икосаэдры усекали задолго до него. Достаточно упомянуть найденные в Шотландии и датированные около 2000 г. до н.э. сотни каменных предметов (по всей видимости, ритуального назначения) в форме сфер и различных многогранников (тел, ограниченных со всех сторон плоскими гранями), включая икосаэдры и додекаэдры. Оригинальная работа Архимеда, к сожалению, не сохранилась, и ее результаты дошли до нас, что называется, «из вторых рук». Во времена Возрождения все Архимедовы тела одно за другим были «открыты» заново. В конце концов, Кеплер в 1619 г. в своей книге «Мировая гармония» («Harmonice Mundi») дал исчерпывающее описание всего набора архимедовых тел — многогранников, каждая грань которых представляет собой правильный многоугольник, а все вершины находятся в эквивалентном положении (как атомы углерода в молекуле С60). Архимедовы тела состоят не менее, чем из двух различных типов многоугольников, в отличие от 5 Платоновых тел, все грани которых одинаковы (как в молекуле С20, наприhello_html_7371a7ac.pngмер).



Рисунок 3. Конструирование Архимедового усеченного икосаэдра
из Платонового икосаэдра

Итак, как же сконструировать Архимедов усеченный икосаэдр из Платонова икосаэдра? Ответ иллюстрируется с помощью рис. 3. Действительно, как видно из Табл. 1, в любой из 12 вершин икосаэдра сходятся 5 граней. Если у каждой вершины отрезать (отсечь) 12 частей икосаэдра плоскостью, то образуется 12 новых пятиугольных граней. Вместе с уже имеющимися 20 гранями, превратившимися после такого отсечения из треугольных в шестиугольные, они составят 32 грани усеченного икосаэдра. При этом ребер будет 90, а вершин 60.



Золотая пропорция в додекаэдре и икосаэдре.

Додекаэдр и двойственный ему икосаэдр занимают особое место среди Платоновых тел. Прежде всего, необходимо подчеркнуть, что геометрия додекаэдра и икосаэдра непосредственно связана с золотой пропорцией hello_html_da46311.png. Действительно, гранями додекаэдра (Рис.1-д) являются пентагоны, т.е. правильные пятиугольники, основанные на золотой пропорции. Если внимательно посмотреть на икосаэдр (Рис.1-г), то можно увидеть, что в каждой его вершине сходится пять треугольников, внешние стороны которых образуют пентагон. Уже этих фактов достаточно, чтобы убедиться в том, что золотая пропорция играет существенную роль в конструкции этих двух Платоновых тел.

Но существуют более глубокие математические подтверждения фундаментальной роли, которую играет золотая пропорция в икосаэдре и додекаэдре. Известно, что эти тела имеют три специфические сферы. Первая (внутренняя) сфера вписана в тело и касается его граней. Обозначим радиус этой внутренней сферы через Ri. Вторая или средняя сфера касается ее ребер. Обозначим радиус этой сферы через Rm. Наконец, третья (внешняя) сфера описана вокруг тела и проходит через его вершины. Обозначим ее радиус через Rc. В геометрии доказано, что значения радиусов указанных сфер для додекаэдра и икосаэдра, имеющего ребро единичной длины, выражается через золотую пропорцию  (Табл. 3).

Таблица 3. Золотая пропорция в сферах додекаэдра и икосаэдра

Заметим, что отношение радиусов hello_html_m46efa013.png= hello_html_3ef628ea.pngодинаково, как для икосаэдра, так и для додекаэдра. Таким образом, если додекаэдр и икосаэдр имеют одинаковые вписанные сферы, то их описанные сферы также равны между собой. Доказательство этого математического результата дано в Началах Евклида.

В геометрии известны и другие соотношения для додекаэдра и икосаэдра, подтверждающие их связь с золотой пропорцией. Например, если взять икосаэдр и додекаэдр с длиной ребра, равной единице, и вычислить их внешнюю площадь и объем, то они выражаются через золотую пропорцию (Табл.4).

Таблица 4. Золотая пропорция во внешней площади и объеме

додекаэдра и икосаэдра.

Таким образом, существует огромное количество соотношений, полученных еще античными математиками, подтверждающих замечательный факт, что именно золотая пропорция является главной пропорцией додекаэдра и икосаэдра, и этот факт является особенно интересным с точки зрения так называемой «додекаэдро-икосаэдрической доктрины», которую мы рассмотрим ниже.



Что такое календарь?

Русская пословица гласит: «Время – око истории». Все, что существует во Вселенной: Солнце, Земля, звезды, планеты, известные и неизвестные миры, и все, что есть в природе живого и неживого, все имеет пространственно-временное измерение. Время измеряется путем наблюдения периодически повторяющихся процессов определенной длительности.

В основу измерения времени астрономия положила движение небесных тел, которое отражает три фактора: вращение Земли вокруг своей оси, обращение Луны вокруг Земли и движение Земли вокруг Солнца. От того, на каком из этих явлений основывается измерение времени, зависят и разные понятия времени. Астрономия знает звездное время, солнечное время, местное время, поясное время, декретное время, атомное время и т.д.

Солнце, как и все остальные светила, участвует в движении по небосводу. Кроме суточного движения, Солнце обладает так называемым годичным движением, а весь путь годичного движения Солнца по небосводу называется эклиптикой. Если, например, заметить расположение созвездий в какой-нибудь определенный вечерний час, а затем повторять это наблюдение через каждый месяц, то перед нами предстанет иная картина неба. Вид звездного неба изменяется непрерывно: каждому времени года свойственна своя картина вечерних созвездий и каждая такая картина через год повторяется. Следовательно, по истечении года Солнце относительно звезд возвращается на прежнее место.

Для удобства ориентировки в звездном мире астрономы разделили весь небосвод на 88 созвездий. Каждое из них имеет свое наименование. Из 88 созвездий особое место в астрономии занимают те, через которые проходит эклиптика. Эти созвездия, кроме собственных имен, имеют еще обобщенное название – зодиакальные (от греческого слова «zoop» — животное). Они представляют собой широко известные во всем мире символы (знаки) и аллегорические изображения, вошедшие в календарные системы.

Известно, что в процессе перемещения по эклиптике Солнце пересекает 13 созвездий. Однако астрономы сочли нужным разделить путь Солнца не на 13, а на 12 частей, объединив созвездия Скорпион и Змееносец в единое — под общим названием Скорпион (почему?).

Проблемами измерения времени занимается специальная наука, называемая хронологией. Она лежит в основе всех календарных систем, созданных человечеством. Создание календарей в древности являлось одной из важнейших задач астрономии.

Что же такое «календарь» и какие существуют системы календарей? Слово календарь происходит от латинского слова calendarium, что буквально означает «долговая книга»; в таких книгах указывались первые дни каждого месяца –календы, в которые в Древнем Риме должники платили проценты.

С древнейших времен в странах Восточной и Юго-Восточной Азии при составлении календарей большое значение придавали периодичности движения Солнца, Луны, а также Юпитера и Сатурна, двух гигантских планет Солнечной системы. Есть основание предполагать, что идея создания юпитерианского календаря с небесной символикой 12-летнего животного цикла связана с вращением Юпитера вокруг Солнца, который делает полный оборот вокруг Солнца примерно за 12 лет (11,862 года). С другой стороны вторая гигантская планета Солнечной системы – Сатурн делает полный оборот вокруг Солнца примерно за 30 лет (29, 458 года). Желая согласовать циклы движения гигантских планет, древние китайцы пришли к идее введения 60-летнего цикла Солнечной системы. В течение этого цикла Сатурн делает 2 полных обороты вокруг Солнца, а Юпитер — 5 оборотов.

При создании годичных календарей используются астрономические явления: смена дня и ночи, изменение лунных фаз и смена времен года. Использование различных астрономических явлений привело к созданию у различных народов трех типов календарей: лунные, основанные на движении Луны, солнечные, основанные на движении Солнца, и лунно-солнечные.







Структура египетского календаря

Одним из первых солнечных календарей был египетский, созданный в 4-м тысячелетии до н.э. Первоначально египетский календарный год состоял из 360 дней. Год делился на 12 месяцев ровно по 30 дней в каждом. Однако позже было обнаружено, что такая длительность календарного года не соответствует астрономическому. И тогда египтяне добавили к календарному году «хвостик» из 5 дней, которые однако не входили в состав месяцев. Это были 5 праздничных дней, соединявших соседние календарные годы. Таким образом, египетский календарный год имел следующую числовую структуру: 365 = 12ґ 30 + 5. Заметим, что именно египетский календарь является прообразом современного календаря.

Возникает вопрос: почему египтяне разделили календарный год на 12 месяцев? Ведь существовали календари с другим количеством месяцев в году. Например, в календаре майя год состоял из 18 месяцев по 20 дней в месяце. Следующий вопрос, касающийся египетского календаря: почему каждый месяц имел ровно 30 дней (точнее суток)? Можно поставить некоторые вопросы и по поводу египетской системы измерения времени, в частности по поводу выбора таких единиц времени, как час, минута, секунда. В частности, возникает вопрос: почему единица часа была выбрана таким образом, чтобы она ровно 24 раза укладывалась в сутки, то есть, почему 1 сутки = 24 (2ґ 12) часа? Далее: почему 1 час = 60 минут, а 1 минута = 60 секунд? Эти же вопросы относятся и к выбору единиц угловых величин, в частности: почему окружность разбита на 360°, то есть, почему 2p =360° =12ґ 30° ? К этим вопросам добавляются и другие, в частности: почему астрономы признали целесообразным считать, что существует 12 зодиакальных знаков, хотя на самом деле в процессе своего движения по эклиптике Солнце пересекает 13 созвездий? И еще один «странный» вопрос: почему вавилонская система счисления имела весьма необычное основание – число 60?

Связь египетского календаря с числовыми характеристиками додекаэдра.

Анализируя египетский календарь, а также египетские системы измерения времени и угловых величин, мы обнаруживаем, что в них с удивительным постоянством повторяются четыре числа: 12, 30, 60 и производное от них число 360 = 12ґ 30. Возникает вопрос: не существует ли какой-то фундаментальной научной идеи, которая могла бы дать простое и логичное объяснение использованию этих чисел в египетских системах?

Для ответа на это вопрос еще раз обратимся к додекаэдру, изображенному на Рис. 3.1-д. Напомним, что все геометрические соотношения додекаэдра основаны на золотой пропорции.

Знали ли египтяне додекаэдр? Историки математики признают, что древние египтяне обладали сведениями о правильных многогранниках. Но знали ли они все пять правильных многогранников, в частности додекаэдр и икосаэдр, как наиболее сложные из них? Древнегреческий математик Прокл приписывает построение правильных многогранников Пифагору. Но ведь многие математические теоремы и результаты (в частности Теорему Пифагора) Пифагор позаимствовал у древних египтян в период своей весьма длительной «командировки» в Египет (по некоторым сведениям Пифагор прожил в Египте в течение 22 лет!). Поэтому мы можем предположить, что знание о правильных многогранниках Пифагор, возможно, также позаимствовал у древних египтян (а возможно, у древних вавилонян, потому что согласно легенде Пифагор прожил в древнем Вавилоне 12 лет). Но существуют и другие, более веские доказательства того, что египтяне владели информацией о всех пяти правильных многогранниках. В частности, в Британском Музее хранится игральная кость эпохи Птоломеев, имеющая форму икосаэдра, то есть «Платонового тела», дуального додекаэдру. Все эти факты дают нам право выдвинуть гипотезу о том, что египтянам был известен додекаэдр. И если это так, то из этой гипотезы вытекает весьма стройная система, позволяющая дать объяснение происхождению египетского календаря, а заодно и происхождению египетской системы измерения временных интервалов и геометрических углов.

Гармония циклов Солнечной Системы.

Ранее мы установили, что додекаэдр имеет 12 граней (пентагонов), 30 ребер и 60 плоских углов на своей поверхности (Табл. 3.1). Если исходить из гипотезы, что египтяне знали додекаэдр и его числовые характеристики 5, 12, 30. 60, то каково же было их удивление, когда они обнаружили, что этими же числами выражаются циклы Солнечной системы, а именно, 12-летний цикл Юпитера, 30-летний цикл Сатурна и, наконец, 60-летний цикл Солнечной системы. При этом главный цикл Солнечной системы и цикл Юпитера связаны следующим числовым соотношением: 60 = 12ґ 5 (которое, кстати, совпадает с числовой структурой масштабной иерархии Вселенной!). Таким образом, между такой совершенной пространственной фигурой, как додекаэдр, и Солнечной системой, существует глубокая математическая связь! Такой вывод сделали античные ученые. Это и привело к тому, что додекаэдр был принят в качестве «главной фигуры», которая символизировала Гармонию Мироздания. И тогда египтяне решили, что все их главные системы (календарная система, система измерения времени, система измерения углов) должны соответствовать числовым параметрам додекаэдра! Поскольку по представлению древних движение Солнца по эклиптике имело строго круговой характер, то, выбрав 12 знаков Зодиака, дуговое расстояние между которыми равнялось ровно 30°, египтяне удивительно красиво согласовали годичное движение Солнца по эклиптике со структурой своего календарного года: один месяц соответствовал перемещению Солнца по эклиптике между двумя соседними знаками Зодиака! Более того, перемещение Солнца на один градус соответствовало одному дню в египетском календарном году! При этом эклиптика автоматически получалась разделенной на 360°. Разделив каждые сутки на две части, следуя додекаэдру, египтяне затем каждую половину суток разделили на 12 частей (12 граней додекаэдра) и тем самым ввели час – важнейшую единицу времени. Разделив один час на 60 минут (60 плоских углов на поверхности додекаэдра), египтяне таким путем ввели минуту – следующую важную единицу времени. Точно также они ввели секунду – наиболее мелкую на тот период единицу времени.

Таким образом, выбрав додекаэдр в качестве главной «гармонической» фигуры мироздания, и строго следуя числовым характеристикам додекаэдра 12, 30, 60, египтянам удалось построить чрезвычайно стройный календарь, а также системы измерения времени и угловых величин, которые существуют до настоящего времени! Эти системы полностью согласовывалась с их «Теорией Гармонии», которая, по некоторым сведениям, существовала у древних египтян. Эта теория была основана на золотой пропорции и возникла задолго до возникновения греческой науки и математики.

Вот такие удивительные выводы вытекают из сопоставления додекаэдра с Солнечной системой. И если наша гипотеза правильна (пусть кто-нибудь попытается ее опровергнуть), то отсюда следует, что вот уже много тысячелетий человечество живет под знаком золотого сечения! И каждый раз, когда мы смотрим на циферблат наших часов, который также построен на использовании числовых характеристик додекаэдра 5,12, 30 и 60, мы прикасаемся к главной «Тайне Мироздания» — золотому сечению, сами того не подозревая!



О календаре и системе счисления майя.

Известно, что календарный год в календаре майя имел следующую числовую структуру: 1 год = 360 + 5 = 20ґ 18 + 5 дней, откуда вытекает, что год майя разделили на 18 месяцев по 20 дней в каждом. Числа 20 и 360 были использованы майя в качестве «узловых» чисел своей системы счисления. Однако по своей структуре календарный год майя был подобен структуре египетского календарного года: 1 год = 360 + 5 = 12ґ 30 + 5 дней, в котором числа 12 и 30 были числами додекаэдра. Но что такое число 20 в календаре майя? Обратимся снова к икосаэдру и додекаэдру. В этих «сакральных» фигурах имеется еще одна «священная» числовая характеристика – число вершин, которое одно и то же для додекаэдра и икосаэдра и равно числу 20! Таким образом, древние майя, несомненно, использовали эту числовую характеристику додекаэдра и икосаэдра в своем календаре (разделив год на 20 месяцев) и в своей системе счисления (выбрав числа 20 и 360 в качестве «узловых» чисел своей системы счисления).

Додекаэдро-икосаэдрическая доктрина.

Согласно замечанию комментатора последнего издания сочинений Платона, у него «вся космическая пропорциональность покоится на принципе золотого деления, или гармонической пропорции». Как упоминалось, космология Платона основывается на правильных многогранниках, называемых телами Платона. Представление о «сквозной» гармонии мироздания неизменно ассоциировалось с ее воплощением в этих пяти правильных многогранниках, выражавших идею повсеместного совершенства мира. И то, что главная «космическая» фигура — додекаэдр, символизировавший тело мира и вселенской души, был основан на золотом сечении, придавало последнему особый смысл, смысл главной пропорции мироздания.

Космология Платона стала основой, так называемой икосаэдро-додекаэдрической доктрины, которая с тех пор красной нитью проходит через всю человеческую науку. Суть этой доктрины состоит в том, что додекаэдр и икосаэдр есть типичные формы природы во всех ее проявлениях, начиная с космоса и заканчивая микромиром.

Вопрос о форме Земли постоянно занимал умы ученых античных времен. И когда гипотеза о шарообразной форме Земли получила подтверждение, возникла идея о том, что по своей форме Земля представляет собой додекаэдр. Так, уже Сократ писал: «Земля, если взглянуть на нее сверху, похожа на мяч, сшитый из 12 кусков кожи».

Эта гипотеза Сократа нашла дальнейшее научное развитие в трудах физиков, математиков и геологов. Так, французский геолог де Бимон и известный математик Пуанкаре считали, что форма Земли представляет собой деформированный додекаэдр.

Российский геолог С. Кислицин, также разделял мнение о додекаэдрической форме Земли. Он высказал гипотезу о том, что 400-500 млн. лет назад геосфера додекаэдрической формы превратилась в гео-икосаэдр. Однако такой переход оказался неполным и незавершенным, в результате чего гео-додекаэдр оказался вписанным в структуру икосаэдра.

Недавно московские инженеры В. Макаров и В. Морозов выдвинули еще одну интересную гипотезу, касающуюся формы Земли. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. Их 62 вершины и середины ребер, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления.

В последние годы гипотеза об икосаэдро-додекаэдрической форме Земли была подвергнута проверке. Для этого ученые совместили ось додекаэдра с осью глобуса и, вращая вокруг нее этот многогранник, обратили внимание на то, что его ребра совпадают с гигантскими нарушениями земной коры (например, с Срединно-Атлантическим подводным хребтом). Взяв затем икосаэдр в качестве многогранника, они установили, что его ребра совпадают с более мелкими членениями земной коры (хребты, разломы и т.д.). Эти наблюдения подтверждают гипотезу о близости тектонического строения земной коры с формами додекаэдра и икосаэдра.Узлы гипотетического гео-кристалла являются как бы центрами определенных аномалий на планете: в них расположены все мировые центры экстремального атмосферного давления, районы зарождения ураганов; в одном из узлов икосаэдра (в Габоне) обнаружен «природный атомный реактор», еще работавший 1,7 млрд. лет назад. Ко многим узлам многогранников приурочены гигантские месторождения полезных ископаемых (например, Тюменское месторождение нефти), аномалии животного мира (оз. Байкал), центры развития культур человечества (Древний Египет, протоиндийская цивилизация Мохенджо-Даро, Северная Монгольская и т.п.). Все эти примеры подтверждают удивительную прозорливость интуиции Сократа.

Квинтэссенцией геометрических представлений о всем сущем стали работы американского исследователя Д. Винтера, возглавляющего группу «Планетарные сердцебиения». Он является проповедником идеала формы, унитарного «золотого сечения», которое подобно «золотой цепи» соединяют ген и Вселенную. Принимая концепцию икосаэдрически-додекаэдрической формы Земли, Винтер развивает ее дальше. Он обращает внимание на то, что угол, описываемый осью вращения Земли в ходе ее прецессии за 26 000 лет, составляет 32°. Это в точности равно тому углу, под которым можно наклонить куб, чтобы, вращая его затем вокруг оси (с пятью остановками), получить додекаэдр. По мнению Винтера, энергетический каркас Земли представляет собой додекаэдр, вставленный в икосаэдр, который, в свою очередь, вставлен во второй додекаэдр. Геометрические отношения между указанными многогранниками представляет собой золотое сечение.

Додекаэдрическая структура, по мнению Винтера, присуща не только энергетическому каркасу Земли, но и строению живого вещества. И самое, пожалуй, главное, что структура ДНК генетического кода жизни представляет собой четырехмерную развертку (по оси времени) вращающегося додекаэдра! Таким образом, оказывается, что вся Вселенная – от Метагалактики и до живой клетки – построена по одному принципу – бесконечно вписываемых друг в друга додекаэдра и икосаэдра, находящихся между собой в пропорции золотого сечения!

А вот еще одно подтверждение плодотворности додекаэдро-икосаэдрической доктрины в астрономии, приведенное в статье Валерия Шихирина «Перспективы развития торовых технологий, эластической механики и «чудеса», сотворяемые ими в природе». Согласно утверждению Шихирина, «все «жидкие» звезды и планеты, типа Солнца, Юпитера, Сатурна и т.п., формировались в сверххолодной зоне/очаге деформации звездопрокатного стана галактики в правильные многогранники, будучи замерзшими. При поступательном перемещении выворачиванием природного эластичного тороида-галактики в теплую зону, эти звезды и планеты оттаивали, то есть становились жидкими, по крайней мере, на поверхности, и заливали грани многогранника вместе с его ребрами. Япет — спутник Сатурна, не имеет атмосферы, не растаял, ввиду недостаточности температуры для его оттаивания (химический состав). То есть он имеет твердую глазуревую поверхность-лысину, с которой всю пыль, если она была, просто сдуло в космическое пространство и Япет остался «в чем мать-Галактика родила», то есть правильным многогранником — додекаэдром. Более того, на поверхности Япета (Рис. 3, внизу в середине) хорошо видна так называемая «линия Мажино», точно по экватору опоясывающий планету горный хребет, как бы делящий ее на две равные части. Это ничто иное как заусенец (грат, облой, рубчик, залив, выступ) – избыточный материал, выдавленный при поперечно-винтовой прокатке через зазор между ребордами валков».



hello_html_7629dbfc.png

Рис. 3. Спутник Юпитера Япет имеет форму додекаэдра

Роль икосаэдра в развитии математики.

Имя выдающегося геометра Феликса Клейна широко известно в науке. Основные работы Клейна посвящены неевклидовой геометрии, теории непрерывных групп, теории алгебраических уравнений, теории эллиптических функций, теории автоморфных функций. Свои идеи в области геометрии Клейн изложил в работе «Сравнительное рассмотрение новых геометрических исследований» (1872), известной под названием Эрлангенская программа. Кроме Эрлангенской программы и других выдающихся математических достижений, гениальность Феликса Клейна проявилась также в том, что 100 лет назад он сумел предсказать выдающуюся роль Платоновых тел, в частности, икосаэдра, в будущем развитии науки, в частности, математики. В 1884 г. (запомним этот год) Феликс Клейн опубликовал еще одну книгу «Лекции об икосаэдре и решении уравнений пятой степени», посвященную геометрической теории икосаэдра.

Как известно, икосаэдр (а вместе с ним двойственный к нему додекаэдр) занимают особое место в «живой» природе; форму икосаэдра имеют некоторые вирусы и радиолярии, то есть, икосаэдральная форма и пентагональная симметрия являются фундаментальными в организации живого вещества.

В первой части книги определено и объяснено место икосаэдра в математике. Согласно Ф. Клейну, ткань математики широко и свободно разбегается листами отдельных теорий. Но есть объекты, в которых сходятся несколько листов, — своеобразные точки ветвления. Их геометрия связывает листы и позволяет охватить общематематический смысл разных теорий. Именно таким математическим объектом, по мнению Клейна, является икосаэдр. Клейн трактует икосаэдр как математический объект, из которого расходятся ветви пяти математических теорий: геометрия, теория Галуа, теория групп, теория инвариантов и дифференциальные уравнения.

Таким образом, главная идея Клейна чрезвычайно проста: «каждый уникальный геометрический объект, так или иначе, связан со свойствами икосаэдра».

В чем же состоит значение идей выдающегося математика с точки зрения теории гармонии? Прежде всего, в качестве объекта, объединяющего «главные листы» математики выбрано «тело Платона» — икосаэдр, основанный на золотом сечении. Отсюда естественным образом вытекает мысль, что именно Золотое Сечение и является той главной геометрической идеей, которая, согласно Клейну, может объединить всю математику.

Современники Клейна не сумели по достоинству понять и оценить революционный характер «икосаэдрической» идеи Клейна. Ее значение было понято ровно через 100 лет, то есть только в 1984 г., когда израильский физик Дан Шехтман опубликовал заметку, подтверждающую существование специальных сплавов (названных квазикристаллами), обладающих так называемой «икосаэдрической» симметрией, то есть симметрией 5-го порядка, что строго запрещено классической кристаллографией.

Таким образом, еще в 19-м веке гениальная интуиция Феликса Клейна привела его к мысли о том, что одна из древнейших геометрических фигур – икосаэдр – является главной геометрической фигурой математики. Тем самым Клейн в 19 в. вдохнул новую жизнь в развитие «додекаэдро-икосаэдрического представления» о структуре Вселенной, последователями которого были великие ученые и философы: Платон, построивший свою космологию на основе правильных многогранников, Евклид, посвятивший свои «Начала» изложению теории Платоновых тел, Иоганн Кеплер, использовавший Платоновы тела при создании своего Космического кубка, весьма оригинальной геометрической модели Солнечной системы.

Правильные многогранники вокруг нас.

Рассуждая об устройстве мира, нельзя оставить без внимания живую природу. Встречаются ли в живой природе правильные многогранники?

Правильные многогранники встречаются и в живой природе. Например, скелет одноклеточного организма феодарии (Circogonia icosahedra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное пытается себя защитить: из 12 вершин скелета выходят 12 полых игл. На концах игл находятся зубцы, делающие иглу еще более эффективной при защите.

Чем же вызвана такая природная геометризация феодарий? Тем, по-видимому, что из всех многогранников с тем же числом граней именно икосаэдр имеет наибольший объем при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи. hello_html_m4712b268.jpg

















2. Интересно, что икосаэдр оказался в центре внимания биологов в их спорах относительно формы некоторых вирусов. Вирус не может быть совершенно круглым, как считалось раньше. Для того чтобы определить его форму, брали разные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень – икосаэдр. Его геометрические свойства позволяют экономить генетическую информацию. Правильные многогранники - самые выгодные фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников. Так, куб передает форму кристаллов поваренной соли NaCl, монокристалл алюминиево-калиевых квасцов имеет форму октаэдра, кристалл сернистого колчедана FeS имеет форму додекаэдра, сурьменистый сернокислый натрий - тетраэдра, бор - икосаэдра.

3. Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Подтверждением тому служит форма некоторых кристаллов. Взять хотя бы поваренную соль, без которой мы не можем обойтись. Известно, что она хорошо растворима в воде, служит проводником электрического тока. А кристаллы поваренной соли (NaCl) имеют форму куба.



hello_html_33047ae5.png



4. При производстве алюминия пользуются алюминиево-калиевыми квасцами (K[Al(SO4)2]·12H2O), монокристалл которых имеет форму правильного октаэдра.

5. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана (FeS). Кристаллы этого химического вещества имеют форму додекаэдра.

6. В разных химических реакциях применяется сурьмянистый сернокислый натрий (Na5(SbO4(SO4)) – вещество, синтезированное учеными. Кристалл сурьмянистого сернокислого натрия имеет форму тетраэдра.

7. Последний правильный многогранник – икосаэдр передает форму кристаллов бора (B). В свое время бор использовался для создания полупроводников первого поколения.



hello_html_6dc53738.jpg

Благодаря правильным многогранникам, открываются не только удивительные свойства геометрических фигур, но и пути познания природной гармонии.

Интересная научная гипотеза, авторами которой (в начале 80-х годов) явились московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. Их 62 вершины и середины ребер, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления.







Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.



































Заключение.

В ходе работы над рефератом мы изучили правильные многогранники, рассмотрели их модели, выделили и систематизировали свойства каждого из многогранников. Кроме этого мы узнали, что правильные многогранники с древних времен привлекали внимание ученых, строителей, архитекторов и многих других. Их поражала красота, совершенство, гармония этих многогранников. Пифагорейцы считали эти многогранники божественными и использовали их в своих философских сочинениях о существе мира. Подробно описал свойства правильных многогранников древнегреческий ученый Платон. Правильным многогранникам посвящена последняя XIII книга знаменитых «Начал» Евклида. К многогранникам обращались и в более позднее время. Это видно из научных трудов Иоганна Кеплера.







































Список литературы

1. Адамар Ж. Элементарная геометрия. Часть II. Стереометрия. – М.: Учпедгиз, 1938 (или более поздние издания, например, 3-е изд., 1958). Книга VI. Многогранники. Дополнения: Глава V. 
2. Александров А.Д. Выпуклые многогранники. – М.-Л.; 1950. 
3. Болл У., Коксетер Г. Математические эссе и развлечения. – М.: Мир, 1986, с.142. 
4. Долбилин Н.П. Жемчужины теории многогранников. – М.: МЦНМО, 2000, с.27-31. 
5. Люстерник Л.А. Выпуклые фигуры и многогранники. – М.; 1956. 
6. Перепелкин Д.И. Курс элементарной геометрии. Часть II. Геометрия в пространстве. – М.-Л.: Гостехиздат, 1949, с. 34, с.268. 
7. Смирнова И.М. В мире многогранников. – М.: Просвещение, 1995. 
8. Энциклопедия элементарной математики. Книга IV. Геометрия. - М.; 1963, с. 382. 
9. Яглом И.М., Болтянский В.Г. Выпуклые фигуры. – М.-Л.; 1951 /Библиотека математического кружка, выпуск 4. 


29

Автор
Дата добавления 17.06.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров1956
Номер материала ДБ-125947
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх