Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Физика / Конспекты / Реферат по физике "Всемирное тяготение" 9 класс

Реферат по физике "Всемирное тяготение" 9 класс

  • Физика

Поделитесь материалом с коллегами:

Закон всемирного тяготения

Этот главный для астрономии закон выведен И.Ньютоном в 1687 г. опытным путем (и, насколько мне известно, до сих пор не подтвержден теоретически). Закон утверждает, что два точечных тела с массами m1 и m2 притягивают друг друга с силой

F = G*m1*m2/r2            (1)

где r - расстояние между телами, а G - гравитационная постоянная. Ускорение, которое испытывает тело m2, находящееся на расстоянии r от данного тела m1, равно:

a2 = F/m2 = G*m1/r2          (2)

Закон справедлив и для протяженных тел со сферически-симметричным распределением массы, при этом r - расстояние между центрами симметрии тел. Для несферических тел закон соблюдается приближенно, причем тем точнее, чем больше расстояние между телами (между их центрами масс) по отношению к размерам тел.

Все это всем известно еще со школы, и, казалось бы, без математических выкладок добавить больше нечего. Однако это не так.

Согласно (1), сила притяжения пропорциональна массам и обратно пропорциональна квадрату расстояния. Но масса пропорциональна кубу линейного размера тела. Это означает, что если размеры тел и расстояния между ними (при сохранении их плотностей) пропорционально увеличить, например, в 10 раз, то их массы возрастут в 1000 раз, а квадрат расстояния - только в 100, поэтому сила притяжения увеличится в 10 раз! То есть при увеличении масштаба масса растет на порядок быстрее, чем квадрат расстояния! Из-за ничтожного значения гравитационной постоянной силы притяжения между отдельными предметами на поверхности Земли крайне малы по сравнению с силой притяжения самой Земли, но уже в межпланетных масштабах (сотни миллионов километров) увеличение масс компенсирует G и гравитация становится главной силой.

При уменьшении масштабов проявляется обратный эффект, хоть это уже из биологии. Если, к примеру, уменьшить человека до размеров муравья, т.е. примерно в 100 раз, то его масса уменьшится в 1 000 000 раз. А поскольку сила мышц примерно пропорциональна их поперечному сечению, т.е. квадрату линейного размера, то она уменьшится только в 10 000 раз, т.е. будет 100-кратный выигрыш в силе! Нетрудно догадаться, что фактически насекомые обитают в условиях сильно пониженной по сравнению с более крупными животными гравитации. Поэтому вопрос о том, какой вес смог бы поднять муравей, если бы был размером со слона, просто не имеет смысла. Строение тела насекомых и вообще всех мелких животных оптимально именно для пониженного тяготения, и ноги у муравья просто не выдержат веса тела, не говоря уже о каком-то дополнительном грузе. Так сила тяжести накладывает ограничения на размеры наземных животных, и самые крупные из них (например, динозавры), по-видимому, существенную часть времени проводили в воде.

Летательные способности в животном мире также ограничены массой тела. Не только сила мышц, но и площадь крыльев растет пропорционально квадрату линейных размеров, т.е. для при некоторой предельной массе тела полеты становятся невозможными. Эта критическая масса составляет примерно 15-20 кг, что соответствует весу самых тяжелых из земных птиц. Поэтому очень сомнительно, что древние гиганские ящеры действительно могли летать; скорее всего, их крылья позволяли им только планировать с дерева на дерево.

И замечание не совсем по теме. Достаточно распространено мнение, что занятия тяжелой атлетикой замедляют рост спортсменов, поэтому, мол, среди тяжелоатлетов так много низкорослых. На самом деле низкорослость штангистов действительно наблюдается, но только в ограниченных весовых категориях, особенно среди легковесов. В одной книжке по атлетизму приводится даже пояснение, что низкорослые побеждают чаще оттого, что им приходится поднимать штангу на меньшую высоту. На мой взгляд, такой довод совершенно неубедителен. Я же предлагаю следующее объяснение. Каждый тип ткани (мышцы, кости, кожа, жировая прослойка и т.д.), из которых состоит тело, составляет определенный процент от его общего веса. И если предположить, что эти пропорции одинаковы для двух человек разного роста, то более низкий человек, естественно, будет весить меньше. Однако если он за счет мышц наберет такую же массу тела, что и высокий, то это будет означать, что абсолютная мышечная масса у него больше (поскольку немышечной ткани у него просто меньше по определению). А больше мышечная масса - больше сечения мышц, и, следовательно, в этих условиях при равной массе тела низкий тяжелоатлет действительно сильнее высокого, поэтому последние просто отсеиваются.


Приливные силы.

Однако вернемся к астрономии. Если рассмотреть действие силы тяготения тела О (условно изобразим его точкой) на протяженное тело с центром Q (рис. 1), то можно заметить, что на разные части тела действуют разные силы. Так, самая близкая точка В будет притягиваться сильнее, чем самая далекая А (из-за различия в расстояниях), поэтому вдоль линии QO, соединяющей центры тяжестей обеих тел, тело О будет стремиться растянуть отрезок АВ. На точки С и D, удаленные от линии OQ, сила притяжения будет действовать под углом к линии QO, и эту силу можно разложить на две компоненты: одна направлена параллельно направлению QO, а другая - перпендикулярно к нему - по направлению к центру тела Q. То есть на точки, не лежащие на оси OQ, действует сила, стремящаяся сжать тело в направлении, перпендикулярном направлению на притягивающее тело О. Эти силы растяжения и сжатия называются приливными силами. Их действие на Землю со стороны Луны и Солнца вызывает (как нетрудно догадаться по названию) приливы и отливы.

Чтобы оценить высоту приливной волны на Земле, можно произвести вычисления, подобные оценке сжатия Земли в главе "Земля". Для простоты забудем о суточном вращении Земли и предположим, что вся ее несферичность вызвана притяжением Луны. Приравнивая вес каждого элементарного объема, находящегося на расстоянии r от центра Земли на ее радиусе, перпендикулярном направлению на Луну и направленном на Луну, получим:

m*gп(r) = m*gл(r) - G*m*M²/b2 (3)

где gп(r) - ускорение свободного падения на радиусе, перпендикулярном направлению на Луну, gл(r) - ускорение на радиусе, направленном на Луну, Mл - масса Луны, b - расстояние до Луны, равное разности большой полуоси a орбиты Луны и радиус-вектора r. Зависимость ускорения свободного падения на обеих радиусах одинакова: gп(r) = gл(r) = GM/r², где М - масса, заключенная внутри радиуса r : M(r) = r*4*p*r³/3, где r - плотность вещества. Если все это подставить в уравнение (3), сократить на m и G и принтегрировать по всему радиусу Земли, то получится:

Rп2 = Rл2 - Mл2/p/r*(1/a - 1/(a-Rл))                 (4)

Если подставить сюда значения радиуса Земли, массы и большой полуоси Луны, получится Rл - Rп ~ 7.3 м, что намного больше высоты реальной приливной волны, однако можно предположить, что в действительности из-за вращения твердая оболочка Земли не успевает изменять свою форму, и реально приливную волну образуют в основном водная и воздушная оболочка, а полная амплитуда колебания твердой коры не превышает одного метра.

Для планет приливные силы ограничивают минимальное расстояние, на которое к ним может приблизиться достаточно крупное тело, например, спутник. Очень эффектно это проявились при недавнем падении кометы Шумейкеров-Леви на Юпитер, когда ядро кометы разорвало на множество частей, падение которых вызвало столько откликов в научном мире. Минимальный радиус круговой орбиты, на которой спутник не разрушается под действием приливных сил центрального тела, называется пределом Роша. Если масса спутника намного меньше массы планеты, то зависимость предела Роша aR от радиуса планеты R, плотностей спутника rs и планеты rp выглядит следующим образом:

aR = 2.46*(rs/rp)1/3*R                               (5)

Внутри сферы с радиусом aR невозможна также гравитационная конденсация вещества с образованием единого тела. Такова, вероятно, причина образования колец планет-гигантов.












Краткое описание документа:

Этот главный для астрономии закон выведен И.Ньютоном в 1687 г. опытным путем (и, насколько мне известно, до сих пор не подтвержден теоретически). Закон утверждает, что два точечных тела с массами m1 и m2 притягивают друг друга с силой

 

где r - расстояние между телами, а G - гравитационная постоянная. Ускорение, которое испытывает тело m2, находящееся на расстоянии r от данного тела m1, равно:

a2 = F/m2 = G*m1/r2          (2)

Закон справедлив и для протяженных тел со сферически-симметричным распределением массы, при этом r - расстояние между центрами симметрии тел. Из-за ничтожного значения гравитационной постоянной силы притяжения между отдельными предметами на поверхности Земли крайне малы по сравнению с силой притяжения самой Земли/

Автор
Дата добавления 29.06.2015
Раздел Физика
Подраздел Конспекты
Просмотров182
Номер материала 578180
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх