Инфоурок Математика Другие методич. материалыРеферат по математике на тему "Аттрактор"

Реферат по математике на тему "Аттрактор"

Скачать материал

 

 

 

 

 

 

 

Реферат

По дисциплине: Математика

Аттрактор

 

 

 

 

 

Аттрактор

https://upload.wikimedia.org/wikipedia/commons/thumb/5/52/Atractor_Poisson_Saturne.jpg/333px-Atractor_Poisson_Saturne.jpg

Визуальное отображение странного аттрактора

Аттрактор (англ. attract — привлекать, притягивать) — компактное подмножество фазового пространства динамической системы, все траектории из некоторой окрестности которого стремятся к нему при времени, стремящемся к бесконечности. Аттрактором может являться притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением о воздух), периодическая траектория (пример — самовозбуждающиеся колебания в контуре с положительной обратной связью), или некоторая ограниченная область с неустойчивыми траекториями внутри (как у странного аттрактора).

Существуют различные формализации понятия стремления, что приводит к различным определениям аттрактора, задающим, соответственно, потенциально различные множества (зачастую — вложенные одно в другое). Наиболее употребительными определениями являются максимальный аттрактор (зачастую — в своей малой окрестности, см. ниже), аттрактор Милнора и неблуждающее множество.

Аттракторы классифицируют по:

1.    Формализации понятия стремления: различают максимальный аттрактор, неблуждающее множество, аттрактор Милнора, центр Биркгофа, статистический и минимальный аттрактор.

2.    Регулярности самого аттрактора: аттракторы делят на регулярные (притягивающая неподвижная точка, притягивающая периодическая траектория, многообразие) и странные (нерегулярные — зачастую фрактальные и/или в каком-либо сечении устроенные как канторово множество; динамика на них обычно хаотична).

3.    Локальности («притягивающее множество») и глобальности (здесь же — термин «минимальный» в значении «неделимый»).

Также, есть известные «именные» примеры аттракторов: Лоренца, Плыкина, соленоид Смейла-Вильямса, гетероклинический аттрактор (пример Боуэна).

Свойства и связанные определения

При всех определениях аттрактор полагается замкнутым и (полностью) инвариантным множеством.

С понятием аттрактора также тесно связано понятие меры Синая-Рюэлля-Боуэна: инвариантной меры на нём, к которой стремятся временные средние типичной (в смысле меры Лебега) начальной точки либо временные средние итераций меры Лебега. Впрочем, такая мера существует не всегда (что иллюстрирует, в частности, пример Боуэна).

Виды формализации определения

Поскольку всё фазовое пространство в любом случае сохраняется динамикой, формальное определение аттрактора можно давать, исходя из философии, что «аттрактор это наименьшее множество, к которому всё стремится» — иными словами, выкидывая из фазового пространства всё, что может быть выкинуто.

Максимальный аттрактор

Пусть для динамической системы задана область U, которая переводится строго внутрь себя динамикой:

\overline{f(U)}\subset U

Тогда, максимальным аттрактором системы в ограничении на U называется пересечение всех его образов под действием динамики:

A_{max}=\bigcap_{n=1}^{\infty} f^n(U).

То же самое определение можно применить и для потоков: в этом случае, необходимо потребовать, чтобы векторное поле, задающее поток, на границе области было направлено строго внутрь неё.

Это определение часто применяется как для характеризации множества как «естественного» аттрактора («является максимальным аттрактором своей окрестности»). Также, его применяют в уравнениях с частными производными.

У этого определения есть два недостатка. Во-первых, для его применения необходимо найти поглощающую область. Во-вторых, если такая область была выбрана неудачно — скажем, содержала отталкивающую неподвижную точку с её бассейном отталкивания — то в максимальном аттракторе будут «лишние» точки, около которых на самом деле несколько раз подряд оказаться нельзя, но текущий выбор области этого «не чувствует».

Аттрактор Милнора

По определению, аттрактором Милнора динамической системы называется наименьшее по включению замкнутое множество, содержащее ω-предельные множества почти всех начальных точек по мере Лебега. Иными словами — это наименьшее множество, к которому стремится траектория типичной начальной точки.

Неблуждающее множество

Точка x динамической системы называется блуждающей, если итерации некоторой её окрестности U никогда эту окрестность не пересекают:

\forall n>0 \quad f^n(U)\bigcap U =\emptyset.

Иными словами, точка блуждающая, если у неё есть окрестность, которую любая траектория может пересечь только один раз. Множество всех точек, не являющихся блуждающими, называется неблуждающим множеством.

Статистический аттрактор

Статистический аттрактор определяется как наименьшее по включению замкнутое множество A_{stat}, в окрестности которого почти все точки проводят почти всё время: для любой его окрестности Uдля почти любой (в смысле меры Лебега) точки xвыполнено

\frac{1}{N}\# \{j\le N \mid f^j(x)\in U \}  \to 1, \quad N\to\infty.

Минимальный аттрактор

Минимальный аттрактор определяется как наименьшее по включению замкнутое множество A_{min}, в окрестности которого почти вся мера Лебега проводит почти всё время: для любой его окрестности Uвыполнено

\frac{1}{N}\sum_{j=0}^{N-1} (f_*^j (Leb))(U)  \to 1, \quad N\to\infty.

Регулярные и странные аттракторы

Странные аттракторы

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Lorenz-28.jpg/220px-Lorenz-28.jpg

Классический пример странного аттрактора — аттрактор Лоренца

(примеры: аттрактор Лоренца, аттрактор Рёсслера, соленоид Смейла-Вильямса; комментарий про эффект бабочки и про динамический хаос.)

Странный аттрактор — это притягивающее множество неустойчивых траекторий в фазовом пространстве диссипативной динамической системы. В отличие от аттрактора, не является многообразием, то есть не является кривой или поверхностью. Структура странного аттрактора фрактальна. Траектория такого аттрактора непериодическая (она не замыкается) и режим функционирования неустойчив (малые отклонения от режима нарастают). Основным критерием хаотичности аттрактора является экспоненциальное нарастание во времени малых возмущений. Следствием этого является «перемешивание» в системе, непериодичность во времени любой из координат системы, сплошной спектр мощности и убывающая во времени автокорреляционная функция.

Динамика на странных аттракторах часто бывает хаотической: прогнозирование траектории, попавшей в аттрактор, затруднено, поскольку малая неточность в начальных данных через некоторое время может привести к сильному расхождению прогноза с реальной траекторией. Непредсказуемость траектории в детерминированных динамических системах называют динамическим хаосом, отличая его от стохастического хаоса, возникающего в стохастических динамических системах. Это явление также называют эффектом бабочки, подразумевая возможность преобразования слабых турбулентных потоков воздуха, вызванных взмахом крыльев бабочки в одной точке планеты, в мощное торнадо на другой её стороне вследствие многократного их усиления в атмосфере за некоторое время.

Среди странных аттракторов встречаются такие, хаусдорфова размерность которых отлична от топологической размерности и является дробной. Одним из наиболее известных среди подобных аттракторов является аттрактор Лоренца.

Именные примеры

Аттрактор Лоренца

Система дифференциальных уравнений, создающих аттрактор Лоренца, имеет вид:

\dot x = \sigma (y - x)

\dot y = x (r - z) - y

\dot z = x y - b z

при следующих значениях параметров: ~\sigma=10, ~r=28, ~b = 8/3. Аттрактор Лоренца не является классическим. Он также не является странным в смысле Смейла.

Соленоид Смейла-Вильямса

Соленоид Смейла-Вильямса — пример обратимой динамической системы, аналогичной по поведению траекторий отображению удвоения на окружности. Более точно, эта динамическая система определена на полнотории, и за одну её итерацию угловая координата удваивается; откуда автоматически возникает экспоненциальное разбегание траекторий и хаотичность динамики. Также соленоидом называют и максимальный аттрактор этой системы (откуда, собственно, и происходит название): он устроен как (несчётное) объединение «нитей», наматывающихся вдоль полнотория.

Пример Боуэна, или гетероклинический аттрактор

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Bowen_example_%28heteroclinic_attractor%29.png/200px-Bowen_example_%28heteroclinic_attractor%29.png

Фазовый портрет примера Боуэна

Литература

·       A. Gorodetski, Yu. Ilyashenko. Minimal and strange attractors, International Journal of Bifurcation and Chaos, vol. 6, no. 6 (1996), pp. 1177—1183.

·       А. С. Городецкий. Минимальные аттракторы и частично гиперболические множества динамических систем. Дисс. к. ф.-м. н., МГУ, 2001.

·       Электронная библиотека по нелинейной динамике

·       Статья Дж. Милнора «Аттрактор», Scholarpedia.

·       Галерея самых странных аттракторов. LENTA.RU. Проверено 28 марта 2013. Архивировано из первоисточника 4 апреля 2013.

·       Е. В. Никульчев. Геометрический метод реконструкции систем по экспериментальным данным // Письма в ЖТФ. 2007. Т. 33. Вып. 6. С. 83-89.

·       Е. В. Никульчев. Идентификация динамических систем на основе симметрий реконструированных аттракторов м. 2010.

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Реферат по математике на тему "Аттрактор""

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Оператор очистных сооружений

Получите профессию

Методист-разработчик онлайн-курсов

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Краткое описание документа:

Аттрактор (англ. attract — привлекать, притягивать) — компактное подмножество фазового пространства динамической системы, все траектории из некоторой окрестности которого стремятся к нему при времени, стремящемся к бесконечности. Аттрактором может являться притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением о воздух), периодическая траектория (пример — самовозбуждающиеся колебания в контуре с положительной обратной связью), или некоторая ограниченная область с неустойчивыми траекториями внутри (как у странного аттрактора).

Существуют различные формализации понятия стремления, что приводит к различным определениям аттрактора, задающим, соответственно, потенциально различные множества (зачастую — вложенные одно в другое).

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 655 094 материала в базе

Скачать материал

Другие материалы

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 09.06.2015 1936
    • DOCX 407.5 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Уильямс Майк (Отсутствует). Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Уильямс Майк (Отсутствует)
    Уильямс Майк (Отсутствует)
    • На сайте: 8 лет и 10 месяцев
    • Подписчики: 102
    • Всего просмотров: 401029
    • Всего материалов: 157

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Менеджер по туризму

Менеджер по туризму

500/1000 ч.

Подать заявку О курсе

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

Учитель математики

300/600 ч.

от 7900 руб. от 3950 руб.
Подать заявку О курсе
  • Сейчас обучается 1247 человек из 84 регионов
  • Этот курс уже прошли 3 794 человека

Курс повышения квалификации

Развивающие математические задания для детей и взрослых

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 66 человек из 26 регионов
  • Этот курс уже прошли 81 человек

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 422 человека из 74 регионов
  • Этот курс уже прошли 5 546 человек

Мини-курс

Реклама для роста бизнеса: эффективные стратегии и инструменты

6 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 37 человек из 20 регионов

Мини-курс

Физическая культура и спорт: методика, педагогика, технологи

8 ч.

1180 руб. 590 руб.
Подать заявку О курсе
  • Сейчас обучается 20 человек из 13 регионов
  • Этот курс уже прошли 15 человек

Мини-курс

Успешая команда: опросы, сторис

3 ч.

780 руб. 390 руб.
Подать заявку О курсе