Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Реферат по математике на тему "Аттрактор Лоренца"

Реферат по математике на тему "Аттрактор Лоренца"

В ПОМОЩЬ УЧИТЕЛЮ ОТ ПРОЕКТА "ИНФОУРОК":
СКАЧАТЬ ВСЕ ВИДЕОУРОКИ СО СКИДКОЙ 86%

Видеоуроки от проекта "Инфоурок" за Вас изложат любую тему Вашим ученикам, избавив от необходимости искать оптимальные пути для объяснения новых тем или закрепления пройденных. Видеоуроки озвучены профессиональным мужским голосом. При этом во всех видеоуроках используется принцип "без учителя в кадре", поэтому видеоуроки не будут ассоциироваться у учеников с другим учителем, и благодарить за качественную и понятную подачу нового материала они будут только Вас!

МАТЕМАТИКА — 603 видео
НАЧАЛЬНАЯ ШКОЛА — 577 видео
ОБЖ И КЛ. РУКОВОДСТВО — 172 видео
ИНФОРМАТИКА — 201 видео
РУССКИЙ ЯЗЫК И ЛИТ. — 456 видео
ФИЗИКА — 259 видео
ИСТОРИЯ — 434 видео
ХИМИЯ — 164 видео
БИОЛОГИЯ — 305 видео
ГЕОГРАФИЯ — 242 видео

Десятки тысяч учителей уже успели воспользоваться видеоуроками проекта "Инфоурок". Мы делаем все возможное, чтобы выпускать действительно лучшие видеоуроки по общеобразовательным предметам для учителей. Традиционно наши видеоуроки ценят за качество, уникальность и полезность для учителей.

Сразу все видеоуроки по Вашему предмету - СКАЧАТЬ

  • Математика

Поделитесь материалом с коллегами:















Реферат

По дисциплине: Математика

Аттрактор Лоренца

hello_html_4d535cf3.jpg

















Аттрактор Лоренца

https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Lorenz-03.jpg/220px-Lorenz-03.jpg

решение системы при r=0,3

https://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Lorenz-18.jpg/220px-Lorenz-18.jpg

решение системы при r=1,8

https://upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Lorenz-37.jpg/220px-Lorenz-37.jpg

решение системы при r=3,7

https://upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Lorenz-100.jpg/220px-Lorenz-100.jpg

решение системы при r=10

https://upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Lorenz-16.jpg/220px-Lorenz-16.jpg

решение системы при r=16

https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Lorenz-2406.jpg/220px-Lorenz-2406.jpg

решение системы при r=24,06

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Lorenz-28.jpg/220px-Lorenz-28.jpg

решение системы при r=28 ― собственно, это и есть аттрактор Лоренца

https://upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Lorenz-1000.jpg/220px-Lorenz-1000.jpg

решение системы при r=100 ― виден режим автоколебаний в системе

Аттрактор Лоренца (от англ. to attract — притягивать) ― компактное инвариантное множество Lв трехмерном фазовом пространстве гладкого потока, которое имеет определённую сложную топологическую структуру и является асимптотически устойчивым, оно устойчиво по Ляпунову и все траектории из некоторой окрестности ~Lстремятся к ~Lпри ~t\to\infty(отсюда название).

Аттрактор Лоренца был найден в численных экспериментах Лоренца, исследовавшего поведение траекторий нелинейной системы:

\begin{cases} \dot x = \sigma (y - x) \\ \dot y = x (r - z) - y \\ \dot z = x y - b z \end{cases}

при следующих значениях параметров: σ=10, r=28, b=8/3. Эта система вначале была введена как первое нетривиальное галёркинское приближение для задачи о конвекции морской воды в плоском слое, чем и мотивировался выбор значений σ, r и b, но она возникает также и в других физических вопросах и моделях:

Исходная гидродинамическая система уравнений:

\begin{cases} \frac { \partial \vec v }{\partial t} + \left( \vec v \nabla \right) \vec v = -\frac {\nabla p}{\rho} + \nu \nabla ^2 \vec v + \vec g \\ \frac { \partial \rho }{\partial t} + \nabla \cdot \left( \rho \vec v \right) = 0 \\ \frac { \partial T }{\partial t} + \nabla \cdot \left( T \vec v \right) = \chi \nabla ^2 T \\ \rho = \rho_0 \left( 1 - \gamma \left( T - T_0 \right) \right) \end{cases},

где \vec v — скорость течения, T — температура жидкости, T_0 — температура верхней границы (на нижней поддерживается T_0 + \Delta T), \rho — плотность, p — давление, \vec g — сила тяжести, \gamma,\ \chi,\ \nu — соответственно коэффициент теплового расширения, коэффициент температуропроводности и кинематической вязкости.

В задаче о конвекции модель возникает при разложении скорости течения и температуры в двумерные ряды Фурье и последующей их «обрезки» с точностью до первых-вторых гармоник. Кроме того, приведённая полная система уравнений гидродинамики записывается в приближении Буссинеска. Обрезка рядов в определённой мере оправдана, так как Сольцмен в своих работах продемонстрировал отсутствие каких-либо интересных особенностей в поведении большинства гармоник.

Применимость и соответствие реальности

Обозначим физический смысл переменных и параметров в системе уравнений применительно к упомянутым задачам.

  • Конвекция в плоском слое. Здесь x отвечает за скорость вращения водяных валов, y и z — за распределение температуры по горизонтали и вертикали, r — нормированное число Рэлея, σ — число Прандтля (отношение коэффициента кинематической вязкости к коэффициенту температуропроводности), b содержит информацию о геометрии конвективной ячейки.

  • Конвекция в замкнутой петле. Здесь x — скорость течения, y — отклонение температуры от средней в точке, отстоящей от нижней точки петли на 90°, z — то же, но в нижней точке. Подведение тепла производится в нижней точке.

  • Вращение водяного колеса. Рассматривается задача о колесе, на ободе которого укреплены корзины с отверстиями в дне. Сверху на колесо симметрично относительно оси вращения льётся сплошной поток воды. Задача равнозначна предыдущей, перевернутой «вверх ногами», с заменой температуры на плотность распределения массы воды в корзинах по ободу.

  • Одномодовый лазер. Здесь x — амплитуда волн в резонаторе лазера, y — поляризация, z — инверсия населённостей энергетических уровней, b и σ — отношения коэффициентов релаксации инверсии и поля к коэффициенту релаксации поляризации, r — интенсивность накачки.

Стоит указать, что применительно к задаче о конвекции модель Лоренца является очень грубым приближением, весьма далёким от реальности. Более-менее адекватное соответствие существует в области регулярных режимов, где устойчивые решения качественно отображают экспериментально наблюдаемую картину равномерно вращающихся конвективных валов (Ячейки Бенара). Хаотический режим, присущий модели, не описывает турбулентной конвекции в силу существенной обрезки исходных тригонометрических рядов.

Интересным является существенно большая точность модели при некоторой её модификации, применяемая в частности для описания конвекции в слое, подвергаемом вибрации в вертикальном направлении либо переменному тепловому воздействию. Такие изменения внешних условий приводят к модулированию коэффициентов в уравнениях. При этом высокочастотные Фурье-компоненты температуры и скорости существенно подавляются, улучшая соответствие модели Лоренца и реальной системы.

Примечательно везение Лоренца при выборе значения параметра ~r, так как система приходит к странному аттрактору только при значениях, больших 24,74, при меньших поведение оказывается совершенно иным.

Поведение решения системы

Рассмотрим изменения в поведении решения системы Лоренца при различных значениях параметра r. На иллюстрациях к статье приведены результаты численного моделирования для точек с начальными координатами (10,10,10) и (-10,-10,10). Моделирование производилось с помощью приведённой ниже программы, написанной на языке Фортран, построение графиков по полученным таблицам — из-за слабых графических возможностей Фортрана с помощью Compaq Array Viewer.

  • r<1 — аттрактором является начало координат, других устойчивых точек нет.

  • 1<r<13,927 — траектории спирально приближаются (это соответствует наличию затухающих колебаний) к двум точкам, положение которых определяется формулами:

\begin{cases} x = \pm \sqrt{b(r-1)} \\ y = \pm \sqrt{b(r-1)} \\z = r-1 \end{cases}

Эти точки определяют состояния стационарного режима конвекции, когда в слое формируется структура из вращающихся валов жидкости.

  • r≈13,927 — если траектория выходит из начала координат, то, совершив полный оборот вокруг одной из устойчивых точек, она вернется обратно в начальную точку — возникают две гомоклинические петли. Понятие гомоклинической траектории означает, что она выходит и приходит в одно и то же положение равновесия.

  • r>13,927 — в зависимости от направления траектория приходит в одну из двух устойчивых точек. Гомоклинические петли перерождаются в неустойчивые предельные циклы, также возникает семейство сложно устроенных траекторий, не являющееся аттрактором, а скорее наоборот, отталкивающее от себя траектории. Иногда по аналогии эта структура называется «странным репеллером» (англ. to repel — отталкивать).

  • r≈24,06 — траектории теперь ведут не к устойчивым точкам, а асимптотически приближаются к неустойчивым предельным циклам — возникает собственно аттрактор Лоренца. Однако обе устойчивые точки сохраняются вплоть до значений r≈24,74.

При больших значениях параметра траектория претерпевает серьезные изменения. Шильников и Каплан показали, что при очень больших r система переходит в режим автоколебаний, при этом, если уменьшать параметр, будет наблюдаться переход к хаосу через последовательность удвоений периода колебаний.

Значимость модели

Модель Лоренца является реальным физическим примером динамических систем с хаотическим поведением, в отличие от различных искусственно сконструированных отображений («зуб пилы», «тент», преобразование пекаря, отображение Фейгенбаума и др.).

Программы, моделирующие поведение системы Лоренца

Borland C

#include

#include

void main()

{

double x = 3.051522, y = 1.582542, z = 15.62388, x1, y1, z1;

double dt = 0.0001;

int a = 5, b = 15, c = 1;

int gd=DETECT, gm;

initgraph(&gd, &gm, "C:\\BORLANDC\\BGI");

do {

x1 = x + a*(-x+y)*dt;

y1 = y + (b*x-y-z*x)*dt;

z1 = z + (-c*z+x*y)*dt;

x = x1; y = y1; z = z1;

putpixel((int)(19.3*(y - x*0.292893) + 320),

(int)(-11*(z + x*0.292893) + 392), 9);

} while (!kbhit());

closegraph();

}

Mathematica

data = Table[

With[{N = 1000, dt = 0.01, a = 5, b = 1 + j, c = 1},

NestList[Module[{x, y, z, x1, y1, z1},

{x, y, z} = #;

x1 = x + a (-x + y) dt;

y1 = y + (b x - y - z x) dt;

z1 = z + (-c z + x y) dt;

{x1, y1, z1}] &,

{3.051522, 1.582542, 15.62388}, N

]

],

{j, 0, 5}];

Graphics3D@MapIndexed[{Hue[0.1 First[#2]], Point[#1]} &, data]

Borland Pascal

Program Lorenz;

Uses CRT, Graph;

Const

dt = 0.0001;

a = 5;

b = 15;

c = 1;

Var

gd, gm: Integer;

x1, y1, z1, x, y, z: Real;

Begin

gd:=Detect;

InitGraph(gd, gm, 'c:\bp\bgi');

x := 3.051522;

y := 1.582542;

z := 15.62388;

While not KeyPressed Do Begin

x1 := x + a*(-x+y)*dt;

y1 := y + (b*x-y-z*x)*dt;

z1 := z + (-c*z+x*y)*dt;

x := x1;

y := y1;

z := z1;

PutPixel(Round(19.3*(y - x*0.292893) + 320),

Round(-11*(z + x*0.292893) + 392), 9);

End;

CloseGraph;

ReadKey;

End.

FORTRAN

program LorenzSystem

real,parameter::sigma=10

real,parameter::r=28

real,parameter::b=2.666666

real,parameter::dt=.01

integer,parameter::n=1000

real x,y,z

open(1,file='result.txt',form='formatted',status='replace',action='write')

x=10.;y=10.;z=10.

do i=1,n,1

x1=x+sigma*(y-x)*dt

y1=y+(r*x-x*z-y)*dt

z1=z+(x*y-b*z)*dt

x=x1

y=y1

z=z1

write(1,*)x,y,z

enddo

print *,'Done'

close(1)

end program LorenzSystem

QBASIC/FreeBASIC(«fbc -lang qb»)

DIM x, y, z, dt, x1, y1, z1 AS SINGLE

DIM a, b, c AS INTEGER

x = 3.051522: y = 1.582542: z = 15.62388: dt = 0.0001

a = 5: b = 15: c = 1

SCREEN 12

PRINT "Press Esc to quit"

WHILE INKEY$ <> CHR$(27)

x1 = x + a * (-x + y) * dt

y1 = y + (b * x - y - z * x) * dt

z1 = z + (-c * z + x * y) * dt

x = x1

y = y1

z = z1

PSET ((19.3 * (y - x * .292893) + 300), (-11 * (z + x * .292893) + 360)), 9

WEND

END

JavaScript и HTML5

var cnv = document.getElementById("cnv");

var cx = cnv.getContext('2d');

var x = 3.051522, y = 1.582542, z = 15.62388, x1, y1, z1;

var dt = 0.0001;

var a = 5, b = 15, c = 1;

var h = parseInt(cnv.getAttribute("height"));

var w = parseInt(cnv.getAttribute("width"));

var id = cx.createImageData(w, h);

var rd = Math.round;

var idx = 0;

i=1000000; while (i--) {

x1 = x + a*(-x+y)*dt;

y1 = y + (b*x-y-z*x)*dt;

z1 = z + (-c*z+x*y)*dt;

x = x1; y = y1; z = z1;

idx=4*(rd(19.3*(y - x*0.292893) + 320) + rd(-11*(z + x*0.292893) + 392)*w);

id.data[idx+3] = 255;

}

cx.putImageData(id, 0, 0);

IDL

PRO Lorenz

n=1000000 & r=dblarr(n,3) & r[0,*]=[3.051522,1.582542,15.62388] & a=5. & b=15. & c=1.

FOR i=0.,n-2. DO r[i+1,*]=r[i,*] + [ a*(r[i,1]-r[i,0]), b*r[i,0]-r[i,1]-r[i,2]*r[i,0], r[i,0]*r[i,1]-c*r[i,2] ]*0.0001

plot,19.3*(r[*,1]-r[*,0]*0.292893)+320.,-11*(r[*,2]+r[*,0]*0.292893)+392.

END

Литература

  • Кузнецов С. П., Лекция 3. Система Лоренца; Лекция 4. Динамика системы Лоренца. // Динамический хаос (курс лекций). — М.: Физматлит, 2001.

  • Saltzman B. Finite amplitude free convection as an initial value problem. // Journal of the atmospheric science, № 7, 1962 — p. 329—341.

  • Лоренц Э. Детерминированное непериодическое движение // Странные аттракторы. — М., 1981. — С. 88-116.

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

Краткое описание документа:

Аттрактор (англ. attract — привлекать, притягивать) — компактное подмножество фазового пространства динамической системы, все траектории из некоторой окрестности которого стремятся к нему при времени, стремящемся к бесконечности. Аттрактором может являться притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением о воздух), периодическая траектория (пример — самовозбуждающиеся колебания в контуре с положительной обратной связью), или некоторая ограниченная область с неустойчивыми траекториями внутри (как у странного аттрактора).

Аттрактор Лоренца (от англ. to attract — притягивать) ― компактное инвариантное множество в трехмерном фазовом пространстве гладкого потока, которое имеет определённую сложную топологическую структуру и является асимптотически устойчивым.

Автор
Дата добавления 23.06.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров372
Номер материала 573736
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх