Инфоурок / Математика / Рабочие программы / Решение неравенств и систем неравенств

Решение неравенств и систем неравенств

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов

hello_html_1e1e2c1d.gifhello_html_1e1e2c1d.gifhello_html_1e1e2c1d.gifhello_html_1e1e2c1d.gifhello_html_1e1e2c1d.gifhello_html_1e1e2c1d.gifhello_html_1e1e2c1d.gifhello_html_1e1e2c1d.gifhello_html_7b85d3eb.gifhello_html_7b85d3eb.gifhello_html_58ed4e85.gifhello_html_3ec87f93.gifhello_html_3ec87f93.gifhello_html_3ec87f93.gifhello_html_7b85d3eb.gifСпецкурс по математике.

«Решение неравенств и систем неравенств».



Автор Кошкарева Л.Ф. учитель математики

СШ имени Н. Алдабергенова П.Балпык би

Коксуского района Алматинской области



Пояснительная записка.

Настоящая программа описывает спецкурс по математике «Решение неравенств и систем неравенств», предназначенный для изучения в 10 и 11 классах общеобразовательной школы. Предполагаемый объем учебного времени – 1 час в неделю, 34 часа в год.

Спецкурс позволит учащимся устранить пробелы в знаниях и получить дополнительную подготовку, способствующей успешной сдаче ЕНТ (Единого Национального Тестирования). Так же он создает предпосылки для развития творческого потенциала учащихся.

Содержание курса содержит теоретический материал, входящий в рамки школьной программы, тренажеры, самостоятельные работы, тесты из дополнительной методической литературы и интернет сайтов.

Роль математической подготовки в общем образовании и ставит следующие цели обучения математики в школе:

- овладение конкретными математическими знаниями, необходимыми для применении в практической деятельности;

- интеллектуальное развитие учащихся, формирования качественного мышления;

- формирование представлений о методах математики.

Спецкурс поможет подготовиться учащимся к тестированию, так как основной целью этого курса является знакомство учащихся с общими методами и приемами решения неравенств и систем неравенств, развитие математических способностей учащихся.

Задачами данного спецкурса являются:

- повышение математического и логического мышления учащихся;

- развитие навыков практической деятельности;

- подготовка учащихся к сдаче ЕНТ по математике.

Работа спецкурса строится на принципах:

- научности;

- доступности;

- вариативности;

- самоконтроля.

Учащиеся должны уметь:

- рационально выбирать метод решения неравенств и систем неравенств;

- решать неравенства аналитическим методом;

- проверять решение неравенств и систем неравенств.



Тематическое планирование.

10 класс, 1 час в неделю, всего 34 часа.

урока

Тема урока

Количество

часов

1.

2.

3.

4.

5.

6-7.

8.

9.

10-11.

12.

13-15.

16.

17-19.

20.


21-23.

24.

25.

26-29.

30.

31-33.

34.


Линейные неравенства.

Практическое решение заданий.

Система линейных неравенств.

Практическое решение заданий.

Решение двойного неравенства.

Практическое решение заданий.

Тестирование.

Квадратные неравенства.

Практическое решение заданий.

Рациональные неравенства.

Практическое решение заданий.

Система рациональных неравенств.

Практическое решение заданий

Система нелинейных неравенств с одной переменной.

Практическое решение заданий.

Тестирование.

Неравенства, содержащие знак модуля.

Практическое решение заданий.

Неравенства высших степеней.

Практическое решение заданий.

Тестирование.


1

1

1

1

1

2

1

1

2

1

3

1

3

1


3

1

1

4

1

3

1



Тематическое планирование.

11 класс, 1 час в неделю, всего 34 часа.

урока

Тема урока

Количество

часов

1.

2-3.

4.

5-7.

8.

9-10.

11.

12.

13-14.

15.

16-17.

18.

19-20.

21.

22-23.

24.

25.

26-27.

28.

29-30.

31.

32-33.

34.


Простейшие тригонометрические неравенства.

Практическое решение заданий.

Тригонометрические неравенства.

Практическое решение заданий.

Система тригонометрических неравенств.

Практическое решение заданий.

Тестирование.

Показательные неравенства.

Практическое решение заданий.

Система показательных неравенств.

Практическое решение заданий.

Логарифмические неравенства.

Практическое решение заданий

Система логарифмических неравенств.

Практическое решение заданий.

Тестирование.

Иррациональные неравенства.

Практическое решение заданий.

Система иррациональных неравенств.

Практическое решение заданий.

Комбинированные неравенства.

Практическое решение заданий.

Тестирование.



1

2

1

3

1

2

1

1

2

1

2

1

2

1

2

1

1

2

1

2

1

2

1



Методическая литература:

  1. Пособие для подготовки к ЕНТ по математике. И.П.Рустюмова, С.Т.Рустюмова, Алматы 2010г.

  2. Система тренировочных задач и упражнений по математике. А.Я.Симонов, Москва 1991г.

  3. Уравнение и неравенства. В.Вавилов, Москва 1987г.

  4. Уравнения и неравенства. Задача Сз. И.Н.Сергеев, В.С.Панферов, Москва 2010г.

  5. Сборник задач по алгебре 8-9. М.А.Галицкий, А.М.Гольдман ,Л.И.Звавич, Москва 2004г.

  6. Математика-1. Учебно-методическое пособие и сборник тестов для поступающих в вузы. Иммаил Акйол, Алматы 2007г.

  7. Учебник. Алгебра 9 класс с углубленным изучением математики. Ю.Н.Макарычев, К.Базаров, Алматы 2009г.

  8. Учебники: Алгебра 8 класс. Ш.А.Алимов 1994г, Математика 6 класс, Алгебра с 7 по 11 классы.

  9. Задачники: Алгебра 8 класс, Алгебра 9 класс, А.Г.Мордкович Москва 2005г.





Разработка урока.

Тема урока: Линейные неравенства.

Цель урока: объяснить правила решения и оформления решения линейных неравенств; рассмотреть решение неравенств различного уровня сложности; развивать умение решать линейные неравенства.

Ход урока.

  1. Организационный момент.

Объявить учащимся цель урока.

  1. Изложение учебного материала по теме (вместе с учащимися):

а) Определение линейного неравенства.

Неравенства вида http://unimath.ru/images/clip_image002_0233.gif называются линейными неравенствами.

б) Свойства линейного неравенства:

а+сhello_html_m7c48e444.gifb+c. Мы можем прибавить одно и тоже число к обеим частям неравенства.

Пусть аhello_html_m7c48e444.gifb, тогда



а-сhello_html_m7c48e444.gifb-c. Мы можем отнять одно и тоже число от обеих частей неравенства.





асhello_html_m7c48e444.gifbc. Мы можем умножить (разделить) на некоторое положительное число обе части неравенства.







асhello_html_m7c48e444.gifbc. Мы можем умножить (разделить) на отрицательное число обе части неравенства, при этом поменять знак неравенства.







  1. Составить таблицу решений простых неравенств вместе с учащимися (по учебнику 6 класса):

Неравенство

Рисунок

Промежутки

http://unimath.ru/images/clip_image016_0056.gif


http://unimath.ru/images/clip_image018_0041.gif

 

открытый луч

http://unimath.ru/images/clip_image022_0031.gif


http://unimath.ru/images/clip_image023_0011.gif

луч

http://unimath.ru/images/clip_image027_0013.gif



http://unimath.ru/images/clip_image028_0029.gif 

http://unimath.ru/images/clip_image030_0025.gif

открытый луч

http://unimath.ru/images/clip_image032_0023.gif

 

http://unimath.ru/images/clip_image033_0011.gif 

луч

a

 




(a;b)

интрвал

a≤x≤b

 

http://unimath.ru/images/clip_image043_0012.gif

[a;b]

отрезок

a

 

http://unimath.ru/images/clip_image048_0013.gif

 

(a;b] полуинтервал

 

4. Закрепление нового материала.
1) На координатной прямой показать множества решений неравенств:
http://unimath.ru/images/clip_image020_0549.gif
2) Решите неравенство:
а)
http://unimath.ru/images/clip_image022_0551.gif     б) http://unimath.ru/images/clip_image024_0560.gif     в) http://unimath.ru/images/clip_image026_0505.gif
3) Найдите наибольшее целое число, удовлетворяющее неравенству:
а)
http://unimath.ru/images/clip_image028_0490.gif     б) http://unimath.ru/images/clip_image030_0455.gif


в)
http://unimath.ru/images/clip_image014_0702.gif     г) http://unimath.ru/images/clip_image016_0685.gif
3) Найдите наименьшее целое
http://unimath.ru/images/clip_image008_0897.gif, удовлетворяющее неравенству:
а)
http://unimath.ru/images/clip_image018_0627.gif     б) http://unimath.ru/images/clip_image020_0550.gif

  1. У доски одновременно работают учащиеся группы первой и второй группы, но каждая группа решает свои задания.

D4DC9FD6

D4DC9FD6

  1. Выполнить тест.

Вариант 1

Вариант 2

Из данных чисел выбрать число, которое является решением неравенства:

1) http://unimath.ru/images/clip_image032_0414.gif 1) http://unimath.ru/images/clip_image034_0395.gif

а) 1 в)0 с)2 д)3 а)1 в)0 с)2 д)3

2) http://unimath.ru/images/clip_image036_0360.gif 2) http://unimath.ru/images/clip_image044_0295.gif

а)4 в)7 с)10 д)49 а)4 в)7 с)0 д)49

3) http://unimath.ru/images/clip_image038_0374.gif 3) http://unimath.ru/images/clip_image046_0272.gif

а)0 в)2 с)6 д)4 а)0 в)2 с)6 д)3

4) http://unimath.ru/images/clip_image040_0340.gif 4) http://unimath.ru/images/clip_image048_0261.gif

а)-5 в)-23 с)-2,5 д)-2 а)10 в)30 с)-10 д) -30

5) http://unimath.ru/images/clip_image004_0103.gif 5) http://unimath.ru/images/clip_image026_0037.gif

а)-2 в)0 с)0,25 д)4 а)-20 в)13 с)20 д)-13

Ответы:

Задание

1

2

3

4

5

I

д

а

с

д

а

II

в

д

с

в

с

  1. Подведение итогов.

  2. Домашнее задание: D4DC9FD6



Общая информация

Номер материала: ДВ-349000

Похожие материалы