Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Решение систем линейных уравнений методом Крамера

Решение систем линейных уравнений методом Крамера

Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

К ОПЛАТЕ ЗА ОДНОГО УЧЕНИКА: ВСЕГО 28 РУБ.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика

Поделитесь материалом с коллегами:

Тема занятия: Решение систем линейных уравнений методом Крамера

Вид занятия (тип урока): Комбинированный

Цели урока:

Дидактическая:

  • повторить пройденный материал;

  • углубить знания студентов по теме “Решение систем линейных уравнений”;

  • изучить решение систем линейных уравнений c помощью метода Крамера;

  • научиться решать системы двух линейных уравнений с двумя неизвестными и трех линейных уравнений с тремя неизвестными, используя метод Крамера.

Развивающая:

  • способствовать развитию:

  • логического мышления;

  • памяти;

  • умению сравнивать, обобщать, анализировать;

  • интереса к избранной специальности.

Воспитательная:

  • стремиться воспитывать:

  • чувства ответственности, исполнительности, аккуратности;

  • чувство гордости за избранную профессию;

  • положительное отношение к знаниям, учениям;

  • интерес к математике

Межпредметные связи:

  • Обеспечивающие: история, русский язык, информатика

  • Обеспечиваемые: специальные предметы

  • Обеспечение занятия:

Наглядные пособия: Презентации к уроку

Раздаточный материал: карточки.

Технические средства обучения: калькуляторы, компьютеры, интерактивная доска

ПЛАН УРОКА

1. Организационный момент (слайд №1)

Здравствуйте, студенты. Тема урока: “Решение систем линейных уравнений методом Крамера”. Ученый-математик Колмогоров А.Н. говорил: “Без знаний математики нельзя понять ни основ современной техники, ни того, как ученые изучают природные и социальные явления”, поэтому математика связана с будущей специальностью. В результате изучения темы научимся решать задачи прикладного характера для профессиональной деятельности.

2. Постановка целей занятия

Цели урока: повторить пройденный материал; углубить знания по теме “Решение систем линейных уравнений”; изучить решение систем линейных уравнений с помощью метода Крамера; научиться решать системы двух линейных уравнений с двумя неизвестными и трех линейных уравнений с тремя неизвестными, используя метод Крамера.

3. Проверка домашнего задания

4. Проверка знаний (слайды № 2,3,4).

Экспресс-опрос

  1. Какое уравнение называется линейным?

  2. Напишите систему m линейных уравнений с n переменными.

  3. Назовите коэффициенты при переменных.

  4. Какие числа называются свободными членами?

  5. Что является решением системы?

  6. Какие методы решения систем линейных уравнений знаете?

Ответы: Уравнение называется линейным, если оно содержит переменные только в первой степени и не содержит произведений переменных.

В системе m линейных уравнений с n переменными:

http://festival.1september.ru/articles/650401/Image6293.gif.

Числа  http://festival.1september.ru/articles/650401/Image6294.gif   называются коэффициентами при переменных, а http://festival.1september.ru/articles/650401/Image6295.gif – свободными членами.

Совокупность чисел http://festival.1september.ru/articles/650401/Image6296.gif называется решением системы линейных уравнений, если при подстановке их вместо переменных во все уравнения они обращаются в верные равенства.

5. Изучение нового материала

В школьном курсе рассматриваются способ подстановки и способ сложения. В курсе высшей математике решают методом Крамера, методом Гаусса и с помощью обратной матрицы. Рассмотрим решение систем линейных уравнений методом Крамера

5.1 Знакомство с биографией Крамера

При изучении новой темы “Решение систем линейных уравнений методом Крамера” важное место занимает связь истории с математикой, что прививает интерес к предмету. Познакомимся с биографией Габриэля Крамера.

http://festival.1september.ru/articles/650401/Image6297.jpg

Сведения из истории (слайды № 5-10)

Крамер является одним из создателей линейной алгебры. Одной из самых известных его работ является “Введение в анализ алгебраических кривых”, опубликованный на французском языке в 1750 году. В ней Крамер строит систему линейных уравнений и решает её с помощью алгоритма, названного позже его именем – метод Крамера.

Габриэль Крамер родился 31 июля 1704 года в Женеве (Швейцария) в семье врача.

Уже в детстве он опережал своих сверстников в интеллектуальном развитии и демонстрировал завидные способности в области математики.

В 18 лет он успешно защитил диссертацию. Через 2 года Крамер выставил свою кандидатуру на должность преподавателя в Женевском университете. Учёный много путешествовал по Европе, перенимая опыт у знаменитых математиков своего времени – Иоганна Бернулли и Эйлера в Базеле, Галлея и де Муавра в Лондоне и других. Со многими из них он продолжал переписываться всю жизнь.

В 1729 году Крамер возобновляет преподавательскую работу в Женевском университете. В это время он участвует в конкурсе Парижской Академии и занимает второе место. Талантливый учёный написал множество статей на самые разные темы: геометрия, история, математика, философия. В 1730 году он опубликовал труд по небесной механике.

В 1740-е гг. Иоганн Бернулли поручает Крамеру подготовить к печати сборник своих работ. В 1742 году Крамер публикует сборник в 4-х томах. В 1744 году он выпускает посмертный сборник работ Якоба Бернулли (брата Иоганна Бернулли), а также двухтомник переписки Лейбница с Иоганном Бернулли. Эти работы вызвали большой интерес со стороны учёных всего мира.

Габриэль Крамер скончался 4 января 1752 года во Франции

5.2 Решение системы линейных уравнений методом Крамера(слайды № 11-15)

Теорема Крамера.

Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Дана система http://festival.1september.ru/articles/650401/Image6298.gif

Формулы Крамера http://festival.1september.ru/articles/650401/Image6299.gifhttp://festival.1september.ru/articles/650401/Image6300.gif………….http://festival.1september.ru/articles/650401/Image6301.gif

http://festival.1september.ru/articles/650401/Image6302.gif

Заменяя столбец с коэффициентами соответствующей переменной свободными членами:

http://festival.1september.ru/articles/650401/Image6303.gifhttp://festival.1september.ru/articles/650401/Image6304.gifhttp://festival.1september.ru/articles/650401/Image6305.gif

6. Закрепление.

6.1 Решение системы двух линейных уравнений с двумя неизвестными методом Крамера (слайды № 16-19)

1) http://festival.1september.ru/articles/650401/Image6306.gif

Ответ: (1;-1)

2)  Фирма состоит из двух отделений, суммарная величина прибыли которых в минувшем году составила 12 млн усл. ед. На этот год запланировано увеличение прибыли первого отделения на 70%, второго – на 40%. В результате суммарная прибыль должна вырасти в 1,5 раза. Какова величина прибыли каждого из отделений: a) в минувшем году; б) в этом году?

Решение. Пусть x и y – прибыли первого и второго отделений в минувшем году.

Тогда условие задачи можно записать в виде системы: http://festival.1september.ru/articles/650401/Image6307.gif

Решив систему, получим x = 4, y = 8.

Ответ: а) прибыль в минувшем году первого отделения - 4 млн усл. ед., второго - 8 усл.ед.: б) прибыль в этом году первого отделения 1,7. 4 = 6,8 млн усл. ед., второго 1,4. 8 = 11,2 млн усл. ед.

При решении системы уравнений могут встретиться три случая:

1) система линейных уравнений имеет единственное решение

(система совместна и определённа)

Условия:

http://festival.1september.ru/articles/650401/Image6308.gif

http://festival.1september.ru/articles/650401/img1.gif.

2) система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

Условия:

http://festival.1september.ru/articles/650401/Image6310.gif,

http://festival.1september.ru/articles/650401/Image6311.gif

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

3) система линейных уравнений решений не имеет

(система несовместна)

Условия:

http://festival.1september.ru/articles/650401/Image6312.gif

http://festival.1september.ru/articles/650401/Image6313.gif

Система называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

6.2 Решение системы трех линейных уравнений с тремя двумя неизвестными методом Крамера (слайды № 20-22)

http://festival.1september.ru/articles/650401/Image6314.gif

Ответ: (1; 0; -1) .

Решение. Находим определители системы:

http://festival.1september.ru/articles/650401/Image6315.gif

http://festival.1september.ru/articles/650401/Image6316.gif http://festival.1september.ru/articles/650401/Image6317.gifhttp://festival.1september.ru/articles/650401/Image6318.gif

http://festival.1september.ru/articles/650401/Image6319.gifhttp://festival.1september.ru/articles/650401/Image6320.gifhttp://festival.1september.ru/articles/650401/Image6321.gif

Ответ: (1; 0; -1) .

7. Домашнее задание (слайд № 23)

Решите системы:

1)http://festival.1september.ru/articles/650401/Image6322.gif

2) http://festival.1september.ru/articles/650401/Image6323.gif

8. Подведение итогов

Подведем итоги урока. По результатам работы на уроке выставляются оценки, с последующей демонстрацией успеваемости в виде диаграммы на интерактивной доске.


Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy



Автор
Дата добавления 18.01.2016
Раздел Математика
Подраздел Конспекты
Просмотров421
Номер материала ДВ-353810
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх