Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Статьи / Решение уравнений, систем уравнений и неравенств с двумя переменными

Решение уравнений, систем уравнений и неравенств с двумя переменными

  • Математика

Поделитесь материалом с коллегами:

Решение уравнений, систем уравнений и неравенств с двумя переменными

Задача 1. Какие геометрические фигуры задают следующие системы уравнений и неравенств:

а) hello_html_m89c130b.gif б) hello_html_m42203f66.gif

Решение

Выполним построение на координатной плоскости.

Для случая а) получим отрезок, принадлежащий прямой 2x­+3y-12=0

Для б) треугольник

hello_html_m2f701ff7.jpghello_html_72775782.jpg

Задача 2. Не выполняя рисунка на координатной плоскости выясните пересекает ли прямую x+y-6=0 отрезок, соединяющий точки:

а) A(-1;-4) и B(-7;3)

б) C(5;2) и D(10;-7)

Решение.

а) координаты точек A и B удовлетворяют неравенству x+y-6<0, т.е. они обе лежат ниже прямой x+y-6=0. Следовательно, отрезок, соединяющий точки A и B, данную прямую не пересекает.

б) координаты точки С удовлетворяют неравенству x+y-6>0, т.е. она лежит выше прямой x+y-6=0. Координаты точки D удовлетворяют неравенству

x+y-6<0, т.е. она лежит ниже прямой x+y-6=0. Следовательно, отрезок CD будет пересекать прямую.

С целью закрепления указанного учебного материала могут быть использованы и такие задачи.

Задача 3. Укажите координаты каких-либо двух точек, если известно, что отрезок, их соединяющий не пересекает прямую 3x-5y=4.

Задача 4. Запишите уравнение какой-либо прямой, которая пересекает отрезок, соединяющий точки A(-2;1) и B(3;5).

В курсе алгебры при изучении графиков уравнений или неравенств с двумя переменными могут быть предложены задачи на определение осей симметрии тех или иных геометрических фигур.

Задача 1. Имеет ли ось симметрии график уравнения x-3y+1=0?

Решение

График уравнения x-3y+1=0 есть прямая линия, следовательно, он имеет оси симметрии и их бесконечное множество.

Задача 2. Сколько осей симметрии имеет график уравнения x2+y2=16?

Решение

Графиком уравнения x2+y2=16 является окружность, следовательно, он имеет бесконечное множество осей симметрии.

Задача 3. Запишите уравнение осей симметрии фигуры, задаваемой системой неравенств.

hello_html_m2cfe733a.gif

Решение

Данная система неравенств задает квадрат ABCD.

hello_html_55115e7c.jpg

Всякий квадрат имеет 4 оси симметрии: KM; EF; AC; BD.

Прямая KM совпадает с ox, поэтому ее уравнение у=0.

Точка N имеет координаты (5;0), значит, x=5 – уравнение EF.

Прямая AC проходит через точки A(3;2) и C(7;-2), для определения коэффициентов k и b в общем уравнении прямой y=kx+b составим систему

hello_html_19338055.gifОтсюда k=-1, b=5, y=-x+5

Аналогично уравнение прямой CD: y=x-5


Осуществлению взаимосвязи курсов алгебры и геометрии способствуют также использование в курсе математики задач на вычисление площадей геометрических фигур, заданных уравнениями или их системами.

Задача 1. Найдите площадь треугольника, заданного системой неравенств

hello_html_26244dc6.gif

Решение

На координатной плоскости изображен заданный треугольник.

Определив координаты точек A,B,C,

hello_html_74d35061.jpgнаходим, что AC=6, OB=3.

hello_html_20ad5492.gif



Ответ: 9


Задача 2. Вычислите площадь треугольника, ограниченного прямыми

y-2x=-2, 3y=-4x+24 и осью абсцисс

Решение


hello_html_m23f44ed.jpg



Координаты A и C найдем как координаты точек пересечения прямых

y-2x=-2 и 3y=-4x+24 с осью абсцисс; получим A(1;0), C(6;0). Для отыскания координат точки B решим систему: hello_html_m3c6f6b1e.gif; B(3;4).

Итак, AC=5; BD=4, hello_html_f89de2b.gif

Ответ: 10

Задача 3. . Из условий х2 + у2 = 9, у2 + z2 = 16 и у2 = = хz для положительных x, у и z, не вычисляя их значений, указать значение выражения ху + уz.

Решение. Привычное задание решить систему уравнений


hello_html_m10f5e953.gifx2+y2=9

y2 +z2=16

y2= xz



у учащихся затруднений не вызывает. Однако в данном случае нужно, не решая систему, ответить на вопрос, чему равно значение выражения ху + уz.. Учитель может обратить внимание учащихся, что х, у и z положительны по условию и, таким образом, дать им некоторую подсказку, что задачу можно решить геометрически.

По теореме, обратной теореме Пифагора, числа х, у и 3 являются соответственно длинами кате­тов и гипотенузы треугольника ABD с прямым углом D. А рассмотрев второе уравнение системы, можно сделать вывод, что у, z и 4 также есть соответственно длины катетов и гипотенузы тре­угольника BCD с прямым углом D

Третье уравнение системы разрешает утверждать, что число у есть среднее пропорциональное чисел х и z, и по теореме, обратной теореме о пропор­циональных отрезках в прямоугольном треугольни­ке, угол ABCпрямой.

Теперь рассмотрим выражение ху + уz.

ху + Уz= (х + z.)*у = 2sАВС =3*4=12.


Примечание. Для данной системы уравнений за­дания могут быть и другие. Например, найти зна­чение выражения х + у + z или в каком отноше­нии находятся числа х и у; z и у;х + z и у.

hello_html_m669f9a76.png

Выберите курс повышения квалификации со скидкой 50%:

Автор
Дата добавления 21.06.2016
Раздел Математика
Подраздел Статьи
Просмотров148
Номер материала ДБ-128990
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх