Инфоурок / Математика / Другие методич. материалы / Сборник нестандартных задач по математике 6 класс
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Я люблю природу», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 15 ДЕКАБРЯ!

Конкурс "Я люблю природу"

Сборник нестандартных задач по математике 6 класс

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов

1.Кувшинки на пруду

На поверхности пруда плавает одна кувшинка, которая постоянно делится и разрастается. Таким образом, каждый день площадь, которую занимают кувшинки, увеличивается в два раза. Через месяц покрытой оказывается вся поверхность пруда. За сколько времени покроется кувшинками вся поверхность пруда, если изначально на поверхности будут плавать две кувшинки?

ОТВЕТ: Две кувшинки покроют озеро за месяц минус один день.

2.Сумма чисел

В XIX веке один учитель задал своим ученикам вычислить сумму всех целых чисел от единицы до ста. Компьютеров и калькуляторов тогда еще не было, и ученики принялись добросовестно складывать числа. И только один ученик нашел правильный ответ всего за несколько секунд. Им оказался Карл Фридрих Гаусс - будущий великий математик. Как он это сделал?

ОТВЕТ: Он выделил 49 пар чисел: 99 и 1, 98 и 2, 97 и 3 ... 51 и 49. В сумме каждая пара чисел равнялась ста, и оставалось два непарных числа 50 и 100. Следовательно, 49х100+50+100=5050.

Либо 100 и 1, 99 и 2, 98 и 3… В сумме каждая пара дает 101, следовательно 101*50=5050

3.Король и премьер-министр

Один король хотел сместить своего премьер-министра, но при этом не хотел его слишком обидеть. Он позвал премьер-министра к себе, положил при нем два листка бумаги в портфель и сказал: "На одном листке я написал "Уходите", а на втором — "Останьтесь". Листок, который вы вытащите, решит вашу судьбу". Премьер-министр догадался, что на обоих листках было написано "Уходите". Как же, однако, умудрился он при этих условиях сохранить свое место?

ОТВЕТ: Премьер-министр вытащил листок бумаги и, не глядя на него, скатал из него шарик — и проглотил. Поскольку на оставшемся листке стояло "Уходите", то королю пришлось признать, что на проглоченном листке значилось "Останьтесь".




4.Кто изображен на портрете?

Один джентльмен, показывая своему другу портрет, нарисованный по его заказу одним художником, сказал: "У меня нет ни сестер, ни братьев, но отец этого человека был сыном моего отца".

Кто был изображен на портрете?

ОТВЕТ: На портрете изображен сын этого джентльмена.

5.Пожар на острове

Человек находится на острове. Из-за долгой засухи трава и кусты на острове сильно пересохли. Внезапно на одном конце острова возник пожар, и ветер погнал огонь в сторону человека. Спастись в море человек не может, так как в море у самого берега плавает множество акул. Берегов без растительности на острове нет. Как человеку спастись?

ОТВЕТ: Человеку нужно зажечь огонь на подветренной от себя стороне и не­много отойти навстречу основному пожару. Ветер погонит огонь, зажженный человеком, к подветренному концу острова. Когда этот участок выгорит, человек смо­жет вернуться на него и спокойно ждать, пока основной пожар дой­дет до этого участка и погаснет, так как гореть уже будет нечему.

6.Переправа через реку

Отец с двумя сыновьями отправился в поход. На их пути встретилась река, у берега которой находился плот. Он выдерживает на воде или отца, или двух сыновей. Как переправиться на другой берег отцу и сыновьям?

ОТВЕТ: Вначале переправляются оба сына. Один из сыновей возвращается обратно к отцу. Отец перебирается на противоположный берег к сыну. Отец остается на берегу, а сын переправляется на исходный берег за братом, после чего они оба переправляются к отцу.

7.Незадачливый рыбак

Один рыбак купил себе новую удочку длиной 5 футов. Домой ему приходиться добираться общественным транспортом, в котором правилами запрещено перевозить предметы длиной более 4-х футов. Как необходимо упаковать удочку, чтобы проехать в общественном транспорте не нарушая правил?

ОТВЕТ: Удочку необходимо упаковать в коробку длиной 4 фута и шириной 3 фута (расположить по диагонали коробки).


8.Приготовление краски

Для того чтобы получить краску оранжевого цвета, необходимо смешать краски желтого цвета (6 частей) и красного цвета (2 части). Сколько грамм краски оранжевого цвета можно получить (максимально), имея в наличии 3 грамма желтой и 3 грамма красной краски?

ОТВЕТ: Из условия задачи видно, что желтой краски требуется в 3 раза больше, чем красной. Следовательно, имея в наличии 3 грамма желтой краски, необходимо взять 1 грамм красной краски. То есть оранжевой краски при смешивании получиться 4 грамма.

9.Сколько страниц в книге?

При издании книги потребовалось 2 775 цифр того, чтобы пронумеровать ее страницы. Сколько стра­ниц в книге?

ОТВЕТ: На первые 9 страниц требуется 9 цифр. С 10-й по 99-ю страницу (90 страниц) требуется 90х2=180 цифр. С 100-й по 999-ю страницу (900 страниц) требуется 900х3=2700 цифр (по 300 цифр на каждую сотню страниц с трехзначной нумерацией). Следовательно, на 999 страниц необходимо 2700+180+9=2889 цифр. Мы перебрали (2889-2775)/3=38 страниц. Итого: 999-38=961 страница была в книге.



Общая информация

Номер материала: ДВ-188834

Похожие материалы