Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Школьная олимпиада 8 класс

Школьная олимпиада 8 класс

Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

К ОПЛАТЕ ЗА ОДНОГО УЧЕНИКА: ВСЕГО 28 РУБ.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика

Поделитесь материалом с коллегами:

Всероссийская олимпиада школьников по математике (школьный этап)

2015-2016 учебный год

8 класс

Задание 1

Какой цифрой оканчивается сумма hello_html_m6bfbb93d.gif ?


Ответ: Нулём.


Решение: hello_html_7d129dd1.gif.


Задание 2

Три математика ехали в разных вагонах одного поезда. Когда поезд подъезжал к станции, математики насчитали на перроне 7, 12 и 15 скамеек. Когда поезд отъезжал, каждый из них насчитал еще несколько скамеек, причем один из них насчитал в три раза больше, чем другой. А сколько насчитал третий?


Ответ: 7 скамеек.


Решение: Очевидно, что тот, кто до остановки проехал большую часть перрона, насчитал большее число скамеечек. Пусть первый насчитал 15 скамеек, второй 12, третий 7. Так как первый насчитал на 3 скамейки больше, чем второй, то, когда поезд будет отъезжать, второй увидит эти 3 скамейки, т.е. насчитает на 3 скамейки больше, чем первый. Аналогично третий насчитает на 8 скамеек больше, чем первый, и на 5 скамеек больше, чем второй. Раз кто-то насчитал в 3 раза больше, чем другой, то разница между насчитанными ими скамейками – четное

число (3x-x=2x). В нашем случае разность насчитанных скамеек четна только между первым и третьим и она равна 8. Значит, первый насчитал 8:2=4 скамейки, тогда второй 4+3=7 скамеек.

Замечание: Можно было обойтись и без четности. Пусть первый насчитал x скамеек. Тогда второй x+3, а третий x+8. А дальше составить всевозможные пары и решить получившиеся три уравнения (один насчитал в три раза больше, чем другой в паре): 3x=x+3, 3x=x+8, 3(x+5)=x+8. Только одно из них имеет целое решение.


Задание 3

Найдите 3 числа, обладающие следующими свойствами: они целые, положительные и сумма обратных величин этих чисел равна 1.



Ответ: (2; 4; 4), (2; 3; 6), (3; 3; 3)





Задание 4

Фирма изготавливает лимонный напиток, разбавляя лимонный сок водой. Сначала фирма производила напиток, содержащий 15% лимонного сока. Через некоторое время генеральный директор отдал указание снизить содержание лимонного сока до 10%. На сколько процентов увеличится количество производимого лимонного напитка при тех же объёмах поставок лимонов?

Ответ: На 50%.

Решение: 1 способ. Содержание лимонного сока в напитке после указания генерального директора снизилось в полтора раза. Значит, из тех же лимонов можно приготовить в полтора раза больше лимонного напитка. Иными словами, количество производимого лимонного напитка увеличится в полтора раза или на 50%.

2 способ. Пусть х – количество производимого напитка до указания генерального директора. Тогда количество лимонного сока в этом напитке – 0,15·х. Пусть теперь у – количество производимого напитка после указания генерального директора. Тогда количество лимонного сока в этом напитке – 0,1·у. Так как подразумевается, что количество лимонного сока не изменилось, получаем равенство 0,15·х = 0,1·у. Умножив обе части этого равенства на 10, получим: у = 1,5·х; или: у = х + 0,5·х. Значит, количество производимого напитка увеличилось на 50%.

Задание 5

Один из углов треугольника на 120° больше другого. Докажите, что биссектриса треугольника, проведённая из вершины третьего угла, вдвое длиннее, чем высота, проведенная из той же вершины.

hello_html_m45b0c850.jpgДоказательство:

Пусть ABC — данный треугольник, hello_html_m26352cb0.pngB = α, hello_html_m26352cb0.pngA = 120° + α . Тогда hello_html_m26352cb0.pngC = 60° - 2α . Если CL — биссектриса данного треугольника, то hello_html_m26352cb0.pngCLA = hello_html_m26352cb0.pngLCB + hello_html_m26352cb0.pngLBC = (30° - α) + α = 30°. Пусть CH - высота треугольника АВС, тогда в треугольнике CLH катет CH, лежащий против угла в 30°, в два раза меньше, чем гипотенуза CL.




Примерные критерии оценивания заданий по математике

2015– 2016 учебный год

8 класс

В соответствии с регламентом проведения математических олимпиад школьников каждая задача оценивается из 7 баллов.

Соответствие правильности решения и выставляемых баллов приведено в таблице.


Баллы

Правильность (ошибочность) решения

7

Полное верное решение.

6 -7

Верное решение. Имеются небольшие недочеты, в целом не влияющие на решение.

5 - 6

Решение в целом верное. Однако оно содержит ряд ошибок, либо не рассмотрение отдельных случаев, но может стать правильным после небольших исправлений или дополнений.

4

Верно рассмотрен один из двух (более сложный) существенных случаев, или в задаче типа «оценка + пример» верно получена оценка.

2 - 3

Доказаны вспомогательные утверждения, помогающие в решении задачи.

1

Рассмотрены отдельные важные случаи при отсутствии решения (или при ошибочном решении).

0

Решение неверное, продвижения отсутствуют. Решение отсутствует.


8 класс

Задание 1

Какой цифрой оканчивается сумма hello_html_m6bfbb93d.gif ?


Задание 2

Три математика ехали в разных вагонах одного поезда. Когда поезд подъезжал к станции, математики насчитали на перроне 7, 12 и 15 скамеек. Когда поезд отъезжал, каждый из них насчитал еще несколько скамеек, причем один из них насчитал в три раза больше, чем другой. А сколько насчитал третий?


Задание 3

Найдите 3 числа, обладающие следующими свойствами: они целые, положительные и сумма обратных величин этих чисел равна 1.



Задание 4

Фирма изготавливает лимонный напиток, разбавляя лимонный сок водой. Сначала фирма производила напиток, содержащий 15% лимонного сока. Через некоторое время генеральный директор отдал указание снизить содержание лимонного сока до 10%. На сколько процентов увеличится количество производимого лимонного напитка при тех же объёмах поставок лимонов?


Задание 5

Один из углов треугольника на 120° больше другого. Докажите, что биссектриса треугольника, проведённая из вершины третьего угла, вдвое длиннее, чем высота, проведенная из той же вершины.


Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy



Автор
Дата добавления 20.09.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров19956
Номер материала ДA-054961
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх