Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Смежные и вертикальные углы

Смежные и вертикальные углы

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy


СВИДЕТЕЛЬСТВО СРАЗУ ПОСЛЕ ПРОСМОТРА ВЕБИНАРА

Вебинар «Подростковая лень: причины, способы борьбы»

Просмотр и заказ свидетельств доступен только до 22 января! На свидетельстве будет указано 2 академических часа и данные о наличии образовательной лицензии у организатора, что поможет Вам качественно пополнить собственное портфолио для аттестации.

Получить свидетельство за вебинар - https://infourok.ru/webinar/65.html

  • Математика

Поделитесь материалом с коллегами:

Урок 6
Смежные и вертикальные углы

Цели: ввести понятия смежных и вертикальных углов; рассмотреть их свойства; и показать, как применяются эти понятия при решении задач.

Наглядные пособия: таблицы «Смежные углы», «Вертикальные углы».

Ход урока

I. Анализ результатов самостоятельной работы.

II. Изучение нового материала. Решение задач.

1. Ввести понятие смежных углов и их свойства (сумма смежных углов равна 180°) с помощью таблицы «Смежные углы».

2. Выполнение практического задания № 55 (на доске и в тетрадях).

3. Устно решить задачи №№ 58, 59, 60, 63, 62 (по рис. 46).

4. Письменно решить задачу № 61 (в; г):

в) hello_html_1a62b1b8.png

Дано: hello_html_14585a18.gifhk и hello_html_14585a18.gifkl – смежные;

hello_html_14585a18.gifhk больше hello_html_14585a18.gifkl на 47°18′.

Найти: hello_html_14585a18.gifhk и hello_html_14585a18.gifkl.

Решение

Пусть hello_html_14585a18.gifkl = х, тогда hello_html_14585a18.gifhk = х + 47°18′.

По свойству о сумме смежных углов hello_html_14585a18.gifkl + hello_html_14585a18.gifhk =180°.

х + х + 4718′ = 180°; 2х = 180° – 47°18′;

2х = 179°60′ – 47°18′; 2х = 132°42′; х = 66°21′.

hello_html_14585a18.gifkl = 66°21′; hello_html_14585a18.gifhk = 66°21′ + 47°18′ = 113°39′.

Ответ: 113°39′ и 66°21′.

г) Пусть hello_html_14585a18.gifkl = х, тогда hello_html_14585a18.gifhk = 3х.

х + 3х = 180°; 4х = 180°; х = 45°; hello_html_14585a18.gifkl = 45°; hello_html_14585a18.gifhk = 135°.

Ответ: 135° и 45°.

5. Понятие вертикальных углов можно ввести, выполняя следующее задание:

1) Начертите неразвернутый hello_html_14585a18.gifАОВ и назовите лучи, являющиеся сторонами этого угла.

2) Проведите луч ОС, являющийся продолжением луча ОА, и луч ОD, являющийся продолжением луча ОВ.

3) Запишите в тетради: углы АОВ и СОD называются вертикальными.

6. На таблице «Вертикальные углы» показать, что при пересечении двух прямых образуются две пары вертикальных углов с вершиной в точке пересечения этих прямых.

7. Определение вертикальных углов (рис. 41).

8. Обоснование того факта, что вертикальные углы равны, вначале можно провести на конкретном примере, записав его на доске и в тетрадях учащихся.

Задача. Прямые АВ и СD пересекаются в точке О так, что hello_html_14585a18.gifАОD =
=
35°. Найдите углы АОС и ВОС.

hello_html_m41d6f64d.png

Решение

1) Углы АОD и АОС смежные, поэтому hello_html_14585a18.gifВОС = 180° – 35° = 145°.

2) Углы АОС и ВОС также смежные, поэтому hello_html_14585a18.gif ВОС = 180° – 145° =
= 35°.

Значит, hello_html_14585a18.gifВОС = hello_html_14585a18.gifАОD = 35°, причем эти углы являются вертикальными.

Вопрос: верно ли утверждение, что любые вертикальные углы равны?

9. Самостоятельное доказательство учащимися свойства вертикальных углов (рис. 41) и запись этого доказательства в тетрадях.

10. Устно решить задачу № 65 (использовать таблицу «Вертикальные углы»).

11. Устно решить задачу № 67 по рисунку 47.

12. Учащиеся самостоятельно, используя свойства вертикальных и смежных углов, должны обосновать тот факт, что если при пересечении двух прямых один из образовавшихся углов прямой, то остальные углы также прямые.

13. Выполнение практического задания № 57.

14. Беседа о построении прямых углов на местности (п. 13) с демонстрацией изготовленного учащимися экера.

III. Самостоятельная работа.

Вариант I

1. Один из смежных углов на 27° меньше другого. Найдите оба смежных угла.

2. Найдите все неразвернутые углы, образованные при пересечении двух прямых, если сумма двух из них равна 226°.

Вариант II

1. Один из смежных углов в девять раз больше другого. Найдите оба смежных угла.

2. Найдите все неразвернутые углы, образованные при пересечении двух прямых, если один из них на 81° больше другого.

IV. Итоги урока.

Домашнее задание: изучить пункты 11–13 из § 6; ответить на вопросы 17–21 на с. 26; выполнить практическое задание № 56; решить задачи №№ 61, 64, 65б.




Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

Автор
Дата добавления 22.01.2016
Раздел Математика
Подраздел Конспекты
Просмотров319
Номер материала ДВ-366325
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх