Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Сообщение по математике на тему "Эндрю Джон Уайлс"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Сообщение по математике на тему "Эндрю Джон Уайлс"

библиотека
материалов

Эндрю Джон Уайлс

Эндрю Джон Уайлс

англ. Sir Andrew John Wiles

Andrew wiles1-3.jpg

Дата рождения:

11 апреля 1953 (62 года)

Место рождения:

КембриджАнглия

Страна:

Flag of the United Kingdom.svg Великобритания

Научная сфера:

математика

Место работы:

Принстонский университет

Альма-матер:

Клэр-колледж и Колледж Мёртон

Известен как:

математик, доказавший Великую теорему Ферма

Награды и премии:

Рыцарь-Командор ордена Британской империи Премия Шао Премия Шао (2005)



Сэр Эндрю Джон Уайлс (англ. Sir Andrew John Wiles, родился 11 апреля 1953КембриджВеликобритания, рыцарь-командор Ордена Британской Империи с 2000) — английский и американский математикпрофессор математики Принстонского, заведующий его кафедрой математики, член научного совета Института математики Клэя.

Получил ученую степень бакалавра в 1974 году в колледже Мертон Оксфордского университета. Научную карьеру начал летом 1975 года в колледже Клэр Кембриджского университета, где и получил степень доктора. В период с 1977 по 1980Уайлс занимал должности младшего научного сотрудника в колледже Клэр и доцента в Гарвардском университете. Он работал над арифметикой эллиптических кривых с комплексным умножением методами теории Ивасавы. В 1982 году Уайлс переехал из Великобритании в США.

Одним из главных событий в его карьере стало доказательство Великой теоремы Ферма: Уайлс обнаружил технический метод, позволивший закончить доказательство, в 1994 году. Работать над теоремой Ферма он начал летом 1986 года сразу после того, как Кен Рибет доказал, что теорема Ферма следует из гипотезы Таниямы — Симуры в случае полустабильных эллиптических кривых. Основная идея о наличии связи между этими теоремами, высказанная в 1985 году, принадлежит немецкому математику Герхарду Фрею.

История доказательства

Великая теорема Ферма утверждает, что не существует натуральных решений уравнения an + bn = cn для натуральных n > 2.

Эндрю Уайлс узнал о Великой теореме Ферма в возрасте десяти лет. Тогда он сделал попытку доказать её, используя методы из школьного учебника; естественно, у него ничего не вышло. Позднее он стал изучать работы математиков, которые пытались доказать эту теорему. После поступления в колледж Эндрю забросил попытки доказать Великую теорему Ферма и занялся изучением эллиптических кривых под руководством Джона Коутса.

В 1950—1960-х годах предположение о наличии связи между эллиптическими кривыми и модулярными формами было высказано японским математиком Симурой, который основывался на идеях, высказанных другим японским математиком — Таниямой. В западных научных кругах эта гипотеза была известна благодаря работе Андре Вейля, который в результате тщательного её анализа обнаружил некоторые свидетельства в её пользу. Из-за этого гипотезу часто называют теоремой Симуры — Таниямы — Вейля. Утверждение гласит, что каждая эллиптическая кривая надалгебраическим числовым полем является автоморфной. В частности, каждая эллиптическая кривая над рациональными числами должна быть модуляром. Последнее свойство (теорема о модулярности) было полностью доказано в 1999 году Кристофом БройлемБрайаном Конрадом, Фредом Даймондом и Ричардом Тейлором, которые проверили вырожденные случаи неполустабильных эллиптических кривых после того, как Уайлс в 1995 году доказал полустабильный случай, доказывающий теорему Ферма.

Связь между теоремами Ферма и Таниямы — Симуры

Пусть p — простое нечётное число и a, b и c — такие натуральные числа, что ap+bp=cp. Тогда соответствующее уравнение y2 = x(x - ap)(x + bp) определяет гипотетическую эллиптическую, называемую кривой, которая существует, если существует контрпример к Великой теореме Ферма. Герхард Фрей заметил, что если такая кривая существует, то она обладает слишком необычными свойствами, и соответственно она может быть не модулярной.

Связь между теоремами Таниямы — Симуры и Ферма была установлена Кеном Рибетом, который основывался на работах Барри Мазура и Жан-Пьера Серра. Рибет доказал, что кривая Фрея не модулярна. Это означало, что доказательство полустабильного случая теоремы Таниямы — Симуры подтверждает правдивость Великой теоремы Ферма.

Работа Уайлса имеет фундаментальный характер, однако метод применим только для эллиптических кривых над рациональными числами, в то время как гипотеза Таниямы — Симуры охватывает эллиптические кривые над любым алгебраическим. Поэтому предполагается, что существует более общее и более элегантное доказательство модулярности эллиптических кривых.

Отражение в культуре

Работа Уайлса над Великой теоремой Ферма нашла отражение в мюзикле «Великое танго Ферма» Лесснера и Розенблума.

Уайлс и его работа упомянуты в эпизоде «Facets» сериала «Star Trek: Deep Space Nine».

Награды

Эндрю Уайлс — лауреат многих международных премий по математике, в числе которых:

В 2000 году сделал пленарный доклад на Европейском математическом конгрессе.


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 25.01.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров323
Номер материала ДВ-375127
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх