881300
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5 480 руб.;
- курсы повышения квалификации от 1 400 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 60%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до 28 февраля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

Инфоурок / Математика / Другие методич. материалы / Сообщение по математике на тему "Интуционизм"

Сообщение по математике на тему "Интуционизм"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Интуиционизм

Интуиционизм — совокупность философских и математических взглядов, рассматривающих математические суждения с позиций интуитивной убедительности. Различаются две трактовки интуиционизма: интуитивная убедительность, которая не связана с вопросом существования объектов, и наглядная умственная убедительность.

В интуициониостской математике отвергается подход теории множеств и ряд рассуждений классической логики. Абстракция потенциальной осуществимости, которая используется в интуиционистской математике, лучше соотносится с действительностью, чем абстракция актуальной бесконечности.

Интуиционистская логика

В интуиционистской математике суждение считается истинным, только если его можно доказать. То есть истинность утверждения «Существует объект x, для которого верно суждение A(x)» доказывается построением такого объекта, а истинность утверждения «A или B» доказывается либо доказательством истинности утверждения A, либо доказательством истинности утверждения B. Отсюда, в частности, следует, что утверждение «A или не A» может быть не истинным, а закон исключённого третьего неприемлем. Истинным математическим суждением является ряд выполненных построений эффективного характера с использованием интуиционистской логики. Эффективность не обязательно связана с наличием алгоритма и может зависеть от физических и исторических факторов, фактического решения проблем.

Основными объектами исследования интуиционистской математики являются конструктивные объекты: натуральные и рациональные числа, конечные множества конструктивных объектов со списком элементов, свободно становящиеся последовательности (последовательности выбора, каждый член которых может быть эффективно доступен), интуиционистские виды (свойства, которыми могут обладать объекты исследования). Свободно становящиеся последовательности различают в зависимости от степени информации, известной исследователю. Если закон формирования последовательности известен полностью, то её называют заданной законом, если известен только начальный отрезок — беззаконной. Виды строятся в иерархию, когда элементы вида определяются независимо от самого вида, что позволяет избегать антиномий. Виды редко являются объектами исследования, большинство результатов интуиционистской математики можно получить без их использования.

Интуиционизм и другие математические подходы

В трактовке теории множеств не делается различие между абстрактными объектами и объектами, существование которых можно подтвердить построением. В классической математике на бесконечные множества экстраполировали свойства и законы конечных совокупностей. При этом не существует способа эффективного построения объектов, что находит своё отражение в так называемых «теоремах чистого существования». Отсутствие возможности построения не имеет связи с антиномиями теории множеств и относится ко всем разделам математики.

Значительное влияние друг на друга оказали концепции формализма и интуиционизма. Содержательные критерии метаматематики, необходимые для обоснования непротиворечивости формальных теорий, обычно уточняются в рамках интуиционизма. В то же время, ряд результатов интуиционистской логики был получен с помощью формализации метода.

В широкой трактовке конструктивное направление математики можно рассматривать как часть интуиционистской математики.

Исторический очерк

Критика теории множеств привела к возникновению двух течений: интуиционизма Лёйтзена Эгберта Яна Брауэра и формализма Давида Гильберта. В 1904 году Л. Э. Я. Брауэр подверг развёрнутой критике ряд концепций классической математики. Его внимание привлёк статус существования: можно ли потенциально построить такие объекты исследования как неизмеримое множество действительных чисел, нигде не дифференцируемая функция? Можно ли полагать, что в окружающем мире существуют бесконечные множества объектов?

Интуиционистская математика в идеалистической трактовке Бауэра — это убедительность мысленных построений, не связанная вопросом существования объектов. Другая трактовка — это «наглядная умственная убедительность простейших конструктивных процессов реальной действительности». Бауэр возражал против формализации интуиционизма.

Аренд Гейтинг сформулировал интуиционистское исчисление предикатов и интуиционистское арифметическое исчисление, Альфредом Тарским была открыта топологическая интерпретация, а Андреем Николаевичем Колмогоровым — интерпретация в виде исчисления задач. Понимание в форме рекурсивной реализуемости было предложено Стивеном Коулом Клини и поддержано научной школой Андрея Андреевича Маркова. К 70-м годам XX века было завершено построение теории свободно становящихся последовательностей.

Краткое описание документа:

Интуиционизм — совокупность философских и математических взглядов, рассматривающих математические суждения с позиций интуитивной убедительности. Различаются две трактовки интуиционизма: интуитивная убедительность, которая не связана с вопросом существования объектов, и наглядная умственная убедительность.

В интуициониостской математике отвергается подход теории множеств и ряд рассуждений классической логики. Абстракция потенциальной осуществимости, которая используется в интуиционистской математике, лучше соотносится с действительностью, чем абстракция актуальной бесконечности.

Общая информация

Номер материала: 559216

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.