Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Способ предоставления материала по теме "Площадь многоугольника

Способ предоставления материала по теме "Площадь многоугольника

Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

К ОПЛАТЕ ЗА ОДНОГО УЧЕНИКА: ВСЕГО 28 РУБ.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика

Поделитесь материалом с коллегами:

Площадь многоугольника.

С темой «Площадь плоских фигур» учащиеся сталкиваются постоянно. Эта тема присутствует в заданиях ОГЭ и ЕГЭ, где нужно найти площади фигур напрямую, применяя формулы, и где необходимо разбивая фигуру на элементы. Учитывая этот момент и требования ФГОС, я вводила формулы нахождения площадей плоских фигур следующим образом.

Площадь параллелограмма.

При введении формулы площади параллелограмма я опиралась на имеющиеся уже знания обучающихся: формулы нахождения площади квадрата, прямоугольника и свойства фигур.

Раздала вырезанные фигуры параллелограмма и попросила разрезать его так, чтобы получить новую фигуру, у которой можно найти площадь. Ученики разбили ее таким образом.hello_html_m278073b9.png



Далее проговариваем, что PB для параллелограмма является высотой. И делаем вывод, что площадь параллелограмма равна произведению высоты на сторону, к которой проведена эта высота.

Площадь треугольника.

Для нахождения площади треугольника опираемся на уже известную нам формулу – формулу площади параллелограмма.

В параллелограмме проводится диагональ, которая разбивает его на два равных треугольника. Равные фигуры имеют равные площади.

Вывод: площадь треугольника равна половине произведения высоты на сторону, к которой она проведена.

Площадь трапеции.

При изучении этой темы я предложила выбрать одну из трех разбивок трапеции и найти ее площадь.

hello_html_m13d2f06c.png

Ученики класса выбрали второй случай, но соединили еще две точки В и М. В итоге получили три треугольника. Составили формулу нахождения площади сложной фигуры и расписали ее по нашим обозначениям. Затем исходили из определения трапеции: в трапеции две стороны параллельны. А перпендикуляры, проведенные к параллельным прямым, равны. Поэтому, выполнив некоторые преобразования, мы получили, что площадь трапеции равна половине произведения суммы оснований на высоту, проведенную к основаниям.

Площадь ромба.


В ромбе провели одну из диагоналей, и нашли площади двух получившихся, равных треугольников. Но сумма высот треугольников является высотой ромба. Отсюда получили формулу нахождения площади ромба через его диагонали.

После изучения этого раздела, я совместно с учителями составила вспомогательный кластер по этой теме.



Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy



Автор
Дата добавления 29.06.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров40
Номер материала ДБ-135858
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх