Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Начальные классы / Конспекты / Статестичиские показатели и его виды

Статестичиские показатели и его виды

  • Начальные классы

Поделитесь материалом с коллегами:

Содержание









Введение



Статистический показатель  это количественно выраженное определенное свойство, качество совокупности в целом или ее частей.

Полученные в результате сводки численности объектов и суммы представляют собой определенные характеристики совокупности и ее частей, т. е. являются статистическими показателями. Но ими статистические показатели далеко не исчерпываются, так как многие показатели получаются дальнейшей обработкой результатов сводки. Таким образом, переход от индивидуальных значений признаков к статистическому показателю, характеризующему совокупность или ее часть, осуществляется через суммирование, или агрегирование. Это может быть суммирование самих заданных признаков или величин, полученных для каждой единицы совокупности на их основании. Полученные суммированием итоги уже являются показателями или для получения показателя над ними, должны быть проделаны дальнейшие вычисления.

Исходя из этого, можно сформулировать общее определение статистического показателя как функции сумм значений функций признаков объектов, входящих в совокупность. Заметим, что это определение охватывает и численность объектов (для чего надо положить суммируемую функцию равной у каждого объекта единице), и простую сумму значений некоторого признака (если суммируемую функцию положить равной значению этого признака).

Таким образом, показатель, в конечном счете, является функцией индивидуальных значений признаков. То, что объединение в сводный показатель происходит обязательно через суммирование, прямо вытекает из рассмотренных ранее черт статистической совокупности. При этом, во-первых, суммироваться могут не сами значения, а некоторые их функции, во-вторых, полученные в сводке суммы могут подвергаться дальнейшим вычислениям.

В некоторых случаях статистический показатель может быть получен не путем вычислительных операций над индивидуальными значениями, а путем их сравнения. Таким показателем может, например, быть максимальное индивидуальное значение, размах вариации и т. п.

Способ получения показателя по существу раскрывается конкретным видом суммируемых признаков и их функций и действиями, производимыми над полученными суммами. В целом это выражает правило получения данного показателя на основании индивидуальных значений признаков, или, иначе говоря, алгоритм получения показателя. Таким образом, наименование показателя придает ему качественную принадлежность, отражая его статистическую структуру и содержание, а также указывает время, место, объект или группу объектов, к которым он относится, единицу измерения и (по мере надобности) другие его особенности.

Статистическая совокупность может быть охарактеризована многими показателями, каждый из которых отражает определенное ее свойство. Всё множество показателей, характеризующих определенные свойства совокупностей, существенные с точки зрения цели ее изучения, должно составлять систему взаимосвязанных элементов. Взаимосвязь показателей системы должна отражать объективно существующие, присущие данной совокупности взаимосвязи.

По статистической структуре показатели, входящие в систему, можно условно разделить на три группы: абсолютные (объемные) величины, относительные величины и средние величины.

Показатель по совокупности, полученный как сумма значений признака отдельных ее единиц, как правило, носит то же наименование, что и сам признак. Например, продукция промышленности есть сумма продукции предприятий. В таких случаях и то, и другое наименование обычно называют «показатель». Но, строго говоря, такой показатель для единицы совокупности еще нельзя назвать статистическим, это — признак единицы. И только обобщенный по совокупности, он становится в точном смысле слова статистическим показателем, отвечающим сформулированному выше определению.

Статистический показатель должен быть точно определенным. Это выдвигает ряд требований к его наименованию. В нем должны быть указаны [11]:

1. статистическая структура показателя, то есть метод его измерения или расчёта — сумма, среднее, отклонение и т. д.;

2. содержание — продукция, численность занятых, фонды, активы и т. д.;

3. совокупность объектов, к которой относится значение показателя, классификационная рубрика, группа — промышленные предприятия РФ, банки и банковские учреждения второго уровня и т. д.

4. момент или период учёта, критический момент наблюдения — на 01.01.2004 г., за 2001-2003 г.г., в сентябре 2004 и т. д.;

5. единица измерения показателя — млн. руб., человек, в процентах к 2000 г. и т. д.;

6. специальные уточнения — в сопоставимых оптовых ценах, на основе паритета покупательной способности валют и т. д.

По статистической структуре различаются следующие виды статистических показателей:

1. абсолютные величины (измеряются в натуральных, условно- натуральных и стоимостных единицах);

2. средние величины (измеряются в тех же единицах, что и усредняемые величины)

3. относительные величины



Виды статистических показателей



Абсолютные величины

Абсолютные величины представляют собой характеристику всего исследуемого явления по отдельно взятому признаку. Абсолютные величины являются результатом первичного учета, заключающегося в первоначальной регистрации предметов, событий хозяйственной деятельности, отражаемой в соответствующей документации (накладных, актах, квитанциях и т.д.). Поэтому, как правило, в абсолютных величинах измеряются такие явления, которые в статистике характеризуются через первичные признаки.

Характерной чертой признаков, выражаемых через абсолютные величины, является существование их независимо от исследователя. Действительно, такой признак, например, как численность крупного рогатого скота при характеристике фермерского хозяйства будет существовать, независимо от того, будет ли осуществляться статистическое исследование этого хозяйства или нет.

По степени охвата исследуемой совокупности выделяют несколько видов абсолютных величин:

1) индивидуальные, характеризующие отдельные единицы совокупности (например, масса единицы произведенной продукции, выраженная в граммах);

2) групповые, отражающие размеры признака в отдельных частях совокупности (например, размер посевной площади, занятой только яровыми, выраженной в гектарах);

3) общие, отражающие размеры признака в совокупности в целом (например, численность населения Российской Федерации на начало определенного года).

Такое разделение абсолютных величин определяет метод их получения: индивидуальные абсолютные величины образуются еще на стадии статистического наблюдения, тогда как групповые и общие получаются в результате обработки полученных статистических данных, то есть на стадии группировки и сводки.

Абсолютные величины всегда именованы, то есть всегда имеют определенные единицы измерения. Выделяют натуральные, условно-натуральные и стоимостные единицы измерения. Существуют также трудовые единицы измерения.

Натуральные единицы измерения используются в случае изучения свойств объекта исследования. Например, объем экспорта нефти оценивается в баррелях и тоннах, строительство дорого – в километрах, и т.д.

Натуральные единицы измерения могут быть простыми и сложными. Например, затраты рабочего времени на производство продукции может выражаться в численности рабочих, занятых на производстве (простая натуральная единица измерения), в человеко-днях, в человеко-часах (сложные натуральные единицы измерения). Или, например, отображение размера грузооборота железнодорожного транспорта в тонно-километрах. Сложные натуральные единицы измерения, как видно из приведенных примеров, всегда отражают сразу несколько сторон исследуемого явления, что в некоторой степени расширяет границы проводимого анализа.

При необходимости совместного исследования различных типов одного и того же явления, выраженного в натуральных измерителях, применяется условно-натуральный измеритель. Он выражает наиболее характерный для явления размер признака, присущий определенному типу этого явления.

Путем соотнесения уровня явления в натуральных единицах измерения с уровнем этого явления, выраженным в условно-натуральных единицах, получают коэффициенты пересчета для соответствующего типа явления. Применение коэффициентов пересчета позволяет проводить анализ разнородных по своему составу явлений, необходимый при изучении социально-экономических процессов. Например, появляется возможность рассчитывать суммарный объем различных по своим существенным свойствам явлений, тогда как суммирование в натуральных единицах измерения было бы некорректным с точки зрения статистического анализа.

Примеры условно-натуральных единиц измерения, применяемых в российской статистике:

1) условное топливо, теплосодержание которого принимается равным 29,3076 МДж. Например, 100 т торфа будут эквивалентны 81,9 тоннам условного топлива, а 100 тонн нефти – 153,6 тоннам условного топлива;

2) условные консервные банки, объем которых составляет 353,4 см3;

Стоимостные единицы измерения абсолютных величин позволяют изучать различные по своему содержанию явления, несопоставимые в натуральных единицах измерения. Кроме того, стоимостные измерители позволяют оценить исследуемое явления в денежном выражении, что также является важным при проведении экономического анализа.

Значимость стоимостных единиц измерения заключается в их применении при расчете макроэкономических показателей, отражающих общий уровень развития страны, например внутреннего валового продукта, национального дохода и др [9]. Действительно, являясь характеристикой социально-экономического развития общества, система макроэкономических показателей отражает и результаты деятельности института государства, измеряет его эффективность. Поэтому, каждый государственный служащий должен знать, какие показатели включаются в систему макроэкономического анализа, по каким методикам они рассчитываются, в каких единицах измерения выражаются, и должен уметь сравнивать эти показатели с уровнем развития других стран.

Относительные величины

Социально-экономические явления невозможно исследовать только на основе данных первичного учета, представленных в виде абсолютных величин. Необходимо сравнивать стороны явлений, выраженные первичными признаками, сопоставлять абсолютные величины между собой, что позволит получить гораздо более глубокое представление об исследуемом явлении. Соотнесение абсолютных величин можно называть сутью относительных величин. Из сущности относительных величин вытекает метод их расчета: соотнесение сравниваемого показателя с другим показателем, принятым за основу, базу для сравнения. Показатель, с которым сравнивается изучаемый признак, так и называется – базисный.

Как правило, в относительных величинах измеряются те явления, которые в статистике выражаются через вторичные признаки. Таким образом, относительные величины также являются вторичными по отношению к абсолютным величинам, которые применяются при измерении первичных признаков. Более того, относительные величины вторичны сравнительно с абсолютными величинами и по методу расчета.

При построении относительных величин необходимо правильно их интерпретировать. Так, соотнося размер основных фондов в стоимостном выражении с численностью рабочих, эксплуатирующих основные фонды, мы получим, сколько рублей стоимости основных фондов приходится на одного рабочего. Или при соотношении числа книг, имеющихся в наличии в библиотеке, с числом читателей, записанных в этой библиотеке, мы получим, сколько книг приходится на одного читателя. А если соотнести число книг, которые выдавались на абонемент с общим числом книг, имеющихся в фондах библиотеки, то результат можно интерпретировать как долю выдаваемых книг в общей численности книг. То есть, правило построения относительных величин заключается в возможности их объяснения с точки зрения анализа исследуемого явления.

В результате расчета относительных величин получаются:

а) коэффициенты, отражающие число раз, в которое изменилось исследуемое явления;

б) проценты, которые соответствуют коэффициенту, умноженному на 100;

в) промилле, выражающие размер исследуемого явления на тысячу единиц совокупности, например, численность врачей-терапевтов на каждую тысячу населения. Применяется такая форма расчета ввиду слишком больших различий между сравниваемыми величинами.

г) При соотнесении показателей, выраженных различными единицами измерения получают величины, которые в общем виде можно отобразить как:

http://www.newreferat.com/images/referats/6886/image001.gif 

Например (соответственно приведенным формулам): руб./тыс. руб.; чел/км2; руб./чел.; кг/руб.



Заключение



Полученные в ходе наблюдения данные об отдельных единицах совокупности подвергаются первичной обработке – сводке и группировке, после чего собранная информация представляется в форме статистических показателей. Такие показатели характеризуют размеры уже не каждой единицы, а явления в целом, то есть носят обобщающий характер. В зависимости от исследуемого признака обобщающие показатели выражаются через абсолютные, относительные и средние величины

Будучи построенными в соответствии с требованиями конкретизации признака для статистического применения, показатели социально-экономической статистики формируют модель реально функционирующей экономики – как в целом, так и отдельных её частей в соответствующих отраслевых и предметных областях.





Список литературы



1. Елисеева И.И. Общая теория статистики: Учебник для ВУЗов. – М.: Финансы и статистика, 1999.



2. Ефимова М.Р. Общая теория статистики: Учебник.- М.: Финансы и статистика, 1999.



3. Ефимова М.Р. Практикум по общей теории статистики: Учебн. пособие.- М.: Финансы и статистика, 1999.



4. Козлов В.С., Эрлих Я.М., Долгушевский Ф.Г. Общая теория статистики: Учебник.- М.: Статистика, 1975.



5. Общая теория статистики: Статистическая методология в изучении коммерческой деятельности. Учебник для ВУЗов.- М.: Финансы и статистика, 1999.



6. Общая теория статистики: Учебник/ Под ред. А.А. Спирина, О.Э. Башиной.- М.: Финансы и статистика, 1996.

Краткое описание документа:

Статистический показатель  это количественно выраженное определенное свойство, качество совокупности в целом или ее частей.

Полученные в результате сводки численности объектов и суммы представляют собой определенные характеристики совокупности и ее частей, т. е. являются статистическими показателями. Но ими статистические показатели далеко не исчерпываются, так как многие показатели получаются дальнейшей обработкой результатов сводки. Таким образом, переход от индивидуальных значений признаков к статистическому показателю, характеризующему совокупность или ее часть, осуществляется через суммирование, или агрегирование. Это может быть суммирование самих заданных признаков или величин, полученных для каждой единицы совокупности на их основании. Полученные суммированием итоги уже являются показателями или для получения показателя над ними, должны быть проделаны дальнейшие вычисления.

Исходя из этого, можно сформулировать общее определение статистического показателя как функции сумм значений функций признаков объектов, входящих в совокупность. Заметим, что это определение охватывает и численность объектов (для чего надо положить суммируемую функцию равной у каждого объекта единице), и простую сумму значений некоторого признака (если суммируемую функцию положить равной значению этого признака).

 

Таким образом, показатель, в конечном счете, является функцией индивидуальных значений признаков. То, что объединение в сводный показатель происходит обязательно через суммирование, прямо вытекает из рассмотренных ранее черт статистической совокупности. При этом, во-первых, суммироваться могут не сами значения, а некоторые их функции, во-вторых, полученные в сводке суммы могут подвергаться дальнейшим вычислениям.

Автор
Дата добавления 22.03.2015
Раздел Начальные классы
Подраздел Конспекты
Просмотров281
Номер материала 453027
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх