965736
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 1.410 руб.;
- курсы повышения квалификации от 430 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 90%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до конца апреля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

ИнфоурокИнформатикаДругие методич. материалыСтатья о проблемах преподавания темы "Количество и единицы измерения информации" в школе

Статья о проблемах преподавания темы "Количество и единицы измерения информации" в школе

библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Сальников Александр Васильевич

МОУ Гимназия19 город-курорт Кисловодск,

май 2006 года.


Об изложении темы
«Количество и единицы измерения информации»
в школьном курсе информатики


Поводом для написания этой статьи послужило проведение одной из городских олимпиад по информатике для школьников. На этой олимпиаде среди других задач были предложены и задачи по определению количества информации, содержащегося в смысле сообщения. Эти задачи были взяты из задачника-практикума по информатике, изданного в 2001 году московским издательством «Лаборатория Базовых Знаний» под редакцией И.Г. Семакина и Е.К. Хеннера [1]1 в составе комплекта учебно-методической литературы по информатике для 7-11 классов общеобразовательных школ. Этот задачник заслуженно получил широкое признание среди школьных учителей информатики так как содержит избыточный набор оригинальных задач по всем темам курса, поэтому многие задачи из него повторяются в других учебных пособиях [] []. Однако задачи из раздела 1. «Представление информации» (§1.3. «Измерение информации» и §1.4. «Количество информации и вероятность») нуждаются, на мой взгляд, в некоторых изменениях. Участникам конкурса были предложены по этим темам задачи двух типов: 1) на определение количества возможных событий (задача №13 «Сообщение о том, что ваш друг живет на 10 этаже, несет 4 бита информации. Сколько этажей в доме?» – ответ – в доме 16 этажей.) и 2) на определение количества информации, содержащегося в смысле сообщения (задача №15 «В коробке лежат 7 разноцветных карандашей. Какое количество информации содержит сообщение, что из коробки достали красный карандаш?» – ответ 2,80735 бита). Обе приведенные задачи имеют либо неправильную постановку, либо неправильный ответ! Кроме того также нуждаются в изменении постановки, либо в уточнении ответа и другие задачи из этих разделов, а именно: №№ 11, 12, 13, 14, 15, 16, 17, 18, 22, 23, 28, 30, 34 из §1.3 и №№ 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, из §1.4., пример 3 из §1.3 и примеры 4 и 5 из §1.4 также нуждаются в уточнениях. Очевидно, что везде где речь пойдет о дробных значениях количества бит информации, необходимо как минимум сделать оговорку, что эти значения имеют смысл усредненных.

Для решения задач такого типа в практике преподавания информатики в школе рекомендуется использовать формулу Хартли [22].

hello_html_m153072c.gif, (1) [33]

где X – количество информации, содержащееся в смысле сообщения о том, что произошло одно из N – равновозможных событий. Эта формула дается ученикам, как следствие из определения единицы измерения количества информации «Сообщение, уменьшающее неопределенность знаний в два раза, содержит в себе 1 бит информации». Обычно это определение дополняется сообщениями о том, что бит – это один разряд двоичного числа и что бит – минимально возможное количество информации. Важно заметить, что при такой подаче, формула (1) определена на множестве натуральных чисел X, дополненном значением X=0 (действительно, трудно представить себе двоичное число, состоящее из нецелого или отрицательного количества цифр!), а N тогда и вовсе может принимать только значения из ряда 1, 2, 4, 8, 16, 32 … . Авторы [2] не забывают об этом и рекомендуют в задачах второго типа производить округление до ближайшего целого с избытком. Из такой рекомендации явно следует, что в задачах первого типа правильным ответом будет указание всего допустимого диапазона значений величины N, а не только её наибольшего значения, как сделано в [1]. То есть правильным ответом к задаче №13, приведенной выше, будет – «В доме может быть от 10 до 16 этажей, а к задаче №15 – «Сообщение о том, что достали красный карандаш содержит в себе 3 бита информации».

Далее из формулы Хартли (1) логарифмированием по основанию 2 можно получить:

hello_html_m5467a8d0.gif (2)

или введя понятие вероятности события hello_html_m4607a62.gif (3)

hello_html_m51198bee.gif, или hello_html_m7242c91e.gif (4)

Последняя формула является частным случаем записи известного определения для энтропии дискретной случайной величины Клода Шеннона (Shannoh C.E.) [44].

Для двух дискретных случайных величин X и Y, заданных законами распределения p(x-xi) = pi и p(y-yi) = qj и совместным распределением p(x = xi, y = yj) = pij количество информации, содержащееся в X относительно Y определяется как hello_html_m56d1433.gif; (5)

Или для одной дискретной случайной величины X:

hello_html_75511ee0.gif (6)

В современных учебниках по теории информации [55], [66], [77] формула для энтропии Шеннона записывается без указания основания логарифма в виде:

hello_html_m3a4e6d6e.gif (7),

где pi – вероятность события, а H(x) – энтропия источника дискретных сообщений. Энтропия всегда определяется как математическое ожидание случайной величины – то есть среднее значение! И тогда становится понятно почему в теории информации мы работаем с нецелыми величинами. Более сложным для понимания может показаться отсутствие основания у логарифма в формуле (7). В случае принятия основанием логарифма 2 мы имеем современное техническое представление информации в двоичной системе счисления. При этом единицей измерения информации становится Bit (Binary Digit) – двоичная цифра. Однако в математическом анализе было бы удобнее перейти к натуральному основанию логарифма, но тогда становится затруднительно осмыслить основы теории информации.

Здесь нужно отметить, что сам Шеннон говорил, что «смысл сообщений не имеет никакого отношения к его теории информации, целиком построенной на положениях теории вероятностей» [88]. А название «Энтропия» заимствовано из определения соответствующей термодинамической функции в статистической термодинамике. В физике энтропия определяется как [99]

hello_html_m74c8c8ef.gif; где g(N,U) – Число возможных квантовых состояний системы из N элементов с энергией U (степень вырождения) и имеет физический смысл в определении абсолютной температуры. В понятии термодинамического равновесия hello_html_m7139e119.gif;

Производная энтропии по энергии при постоянном количестве элементов системы – величина обратная фундаментальной температуре:

hello_html_m39267de8.gif (8)

Вопросы связи физического смысла термодинамической энтропии и энтропии случайной величины по Шеннону еще подлежат осмыслению, но в этой статье речь идёт о преподавании основ информатики школьникам, а здесь не должно быть недоосмысленного.

Школьный учитель не может излагать ученикам основы теории информации с позиций теории вероятностей, используя аппарат математической статистики или статистической термодинамики. Эти дисциплины далеко выходят за рамки школьной программы по математике и физике. Тем не менее обязательный минимум содержания образования по информатике требует от школьника знания единиц измерения информации и умения вычислять количество информации, содержащегося в сообщениях, причем не только в текстовых. Как же учителю выполнить эти требования?

Понятие физической величины и процессов измерения физических величин дается школьникам в начале изучения курса физики (7 класс), однако основные естественно-научные понятия, такие как пространство, время, материя, вещество ещё только осмысливаются учеником в этом возрасте. Понятие об информации не менее сложно и кроме того очень ново по сравнению с перечисленными выше. Ведь первое упоминание об информации, как физической величине (в школьном определении – физической величиной называется то что можно измерить) относится к 50м годам прошлого века, а в научном мире фундаментальные результаты, полученные Клодом Шенноном [4] стали актуальны и вошли в повсеместное использование только в конце 80х – начале 90х годов, то есть 15 – 20 лет назад. Поэтому не удивительно то, что школьный учитель информатики может весьма неглубоко знать основы теории информации. Или, что сегодня не редкость, вовсе не иметь представления об этом предмете! Кроме того, нужно заметить, что закрепление фундаментальных научных понятий происходит у учеников 9 – 10х классов, а понятие о логарифмической функции и операции логарифмирования дается только в конце 10 класса, то есть прологарифмировать формулу Хартли можно только с 11-классниками. Но тем не менее учебные планы и программы, построенные на требованиях обязательного минимума содержания образования [1010] уже в 2000 году предполагали, что учащихся 7 классов можно научить осмысленно и правильно измерять и подсчитывать количество информации. Более того, эта тема обычно излагается в самом начале курса, когда еще не дано представление о системах счисления.

Таким образом корректное изложение ключевой темы «Количество и единицы измерения информации» в школьном курсе информатики весьма затруднительно. Разумно видимо ограничиться сообщением о единицах измерения информации, определив за основную единицу Байт и дать кратные величины и связь между ними, а задачи на определение количества информации, содержащегося в смысле сообщения не предлагать школьникам младше 11 класса. Кроме того, задачи на определение средних значений количества информации по символам алфавита (пример 5 из §1.4. [1]) лучше вовсе не предлагать школьникам. Думаю, что на вопрос ученика – «может ли быть меньше 1 бита информации?» правильный ответ школьного учителя – «Нет, не может!». И, конечно, нежелательно неосмысленно использовать в конкурсных заданиях задачи с неправильной постановкой или неверным решением.


Основы теории информации: Курс лекций / Ю. В. Свирид. – Мн.: БГУ, 2003. - 139 с. ISBN 985-445-946-2. http://www.fpmi.bsu.by/books2004_16.html


Основы теории информации http://www.mtuci.ru/cde/courses/tes/part4.html


Калмыков В.В. Санин А.И. Основы теории информации: Учебное пособие. М.: Изд-во МГТУ, 1992.

Гуров И.П. Основы теории информации и передачи сигналов. - СПб.: BHV – Санкт-Петербург, 2000.

1 Информатика. Задачник-практикум в 2т./Под ред. И.Г. Семакина, Е.К. Хеннера: Том1. – М.: Лаборатория Базовых Знаний, 2001.

2 Гейн А.Г. Информатика: Кн. для учителя: Метод. рекомендации к учеб. 10-11 кл./ А.Г. Гейн, Н.А. Юнерман. – М.: Просвещение, 2001.

3 Р. Хартли. Передачи информации. /В кн.: Передача информации и её применение. – М.: Физматгиз, 1959.

4 Shennon C.E. A Mathematical Theory of Communication. Bell Sys. Tech. J. 27: 379 – 423 (Part II); рус. пер.: Шеннон К. Математическая теория связи // Работы по теории информации и кибернетике. М.: ИЛ, 1963.

5 Гуров И.П. Основы теории информации и передачи сигналов. - СПб.: BHV – Санкт-Петербург, 2000.

6 Калмыков В.В. Санин А.И. Основы теории информации: Учебное пособие. М.: Изд-во МГТУ, 1992.

7 Основы теории информации: Курс лекций / Ю. В. Свирид. – Мн.: БГУ, 2003. - 139 с. ISBN 985-445-946-2. http://www.fpmi.bsu.by/books2004_16.html

8 Лидовский В.В. Теория информации: Учебное пособие. – М.: ???, 2003.

9 Чарльз Китель Статистическая термодинамика, пер. с англ. О.А. Ольхова под ред. С.П. Капицы. – М.: Наука, 1977.

10 А.А. Кузнецов, Л.Е. Самовольнова Программы общеобразовательных учреждений. Информатика. М.: Просвещение 2000

Краткое описание документа:

Эта статья была написана для журнала "информатика и образование" в 2010 году, но так и не была опубликована. Однако, я думаю, что основные мысли изложенные в ней не потеряли актуальности и теперь. В статье содержится исключительно мое (авторское) видение проблем. Надеюсь, что это может быть полезным другим преподавателям практикам.

Общая информация

Номер материала: ДВ-122051

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Информационные технологии в деятельности учителя физики»
Курс повышения квалификации «Методика преподавания информатики в начальных классах»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Организация работы по формированию медиаграмотности и повышению уровня информационных компетенций всех участников образовательного процесса»
Курс профессиональной переподготовки «Информатика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Облачные технологии в образовании»
Курс «Фирменный стиль» (Corel Draw, Photoshop)
Курс «Оператор персонального компьютера»
Курс «3D Studio MAX»
Курс повышения квалификации «Развитие информационно-коммуникационных компетенций учителя в процессе внедрения ФГОС: работа в Московской электронной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Современные тенденции цифровизации образования»
Курс повышения квалификации «Специфика преподавания дисциплины «Информационные технологии» в условиях реализации ФГОС СПО по ТОП-50»
Курс повышение квалификации «Применение интерактивных образовательных платформ на примере платформы Moodle»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.