Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Статья по математике "Некоторые направления развития математической одаренности учащихся и студентов
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Статья по математике "Некоторые направления развития математической одаренности учащихся и студентов

библиотека
материалов

НЕКОТОРЫЕ НАПРАВЛЕНИЯ РАЗВИТИЯ МАТЕМАТИЧЕСКОЙ ОДАРЕННОСТИ УЧАЩИХСЯ И СТУДЕНТОВ.

Муева Т.Б., преподаватель ЭПК

Андрей Николаевич Колмогоров - известный математик. Он не оставлял преподавание в средней школе в течение всей своей жизни, однако при этом он был создателем учебников по математике, организатором знаменитой московской школы-интерната для одаренных детей, а в 1970году вместе с академиком И.К.Кикоиным создал научно-популярный журнал «Квант» для школьников.

Он почти всю свою жизнь как педагог занимался развитием одаренных детей, постоянно анализируя свой собственный опыт в этом отношении. Имея в виду несомненную ценность этого опыта для теории и практики развития высоких, творческих способностей многие ученые и преподаватели используют это в своей работе. Для выработки доверия к идеям А.Н.Колмогорова о развитии математических способностей, для понимания того, насколько содержательно и глубоко были обеспечены его психологические идеи, необходимо обратиться к опыту его становления как математика с одной стороны, и опыту его педагогической деятельности с другой стороны.

По Колмогорову критерии одаренности достаточно условны, все же несколько критериев гениальности давно сложились. Первый-основывается на факте признания человечеством творческих заслуг того или иного деятеля. Второй критерий гениальности, хотя и существенно более спорный, но для психолога никак не менее значительный. Речь идет о специфической личности выдающегося человека, неслучайным и неконъюктурным образом связанной с выдающимися профессиональными результатами.

Эти критерии, упрощая, можно свести к следующему: гений должен отличатся от обычного человека и по своим личностным качествам, и по необычности той жизни, которую он проживает.

Свой путь в математику А.Н.Колмогоров определил его «как очень извилистый».В детстве он не был вундеркиндом.

Но где-то в 4-5 лет он сам придумал и решил такую задачу:» Имеется пуговица с 4-мя дырочками. Для ее закрепления достаточно протянуть нитку по крайней мере через две дырочки. Сколькими способами можно закрепить пуговицу?».

В этом же возрасте он испытал радость математического открытия, установив закономерность- образование последовательных квадратов: 1=1 1+3=2 1+3+5=3 1+3+5+7=4 и т.д.

Колмогоров считает отбор старшеклассников на специализированное обучение не может производиться до перехода из 8 класса в 9 и для этой цели нельзя использовать как способ отбора результаты математически олимпиад.

Цель олимпиады считает он в том, чтобы огромное число школьников почувствовали интерес к математике, почувствовали что математика им дается легко, и могли в дальнейшем «учесть эту сторону своих возможностей».

Позиция выдающегося математика о том, что ускоренное прохождение школьной программы, и вообще ускоренное развитие, которое много лет является чуть ли не главным критерием высоких способностей мало о чем свидетельствует.

Из вышесказанного сделаем такие выводы:

  1. По мнению А.Н.Колмогорова, ускоренное или «вундеркиндное» развитие не только не обязательно для достижения в будущем высокого профессионального, творческого уровня, но в большей степени чревато возможностью неудач и даже психических отклонений. При диагностике математических способностей у детей категорически нельзя ориентироваться на темп развития и обучения.

2.Великий математик считал, что недопустима ранняя специализация способностей. Лишь с расцвета подросткового возраста (12-13 лет) можно начинать расширенное и углубленное обучение математике.

  1. Для развития творческих способностей к математике, необходимо выйти за пределы самой математики и развивать у ребенка общекультурные интересы, в частности, интерес к искусству, музыке. А.Н.Колмогоров считает, что между математическим творчеством и настоящим интересом к музыке имеются какие-то скрытые, глубокие связи.

При работе с одаренными детьми необходимо развивать навыки самообучения. Одаренный ребенок тем и выделяется из основной массы, что сам задает вопросы, сам читает книги по интересующей его теме, сам находит и решает более сложные, чем полагается задачи. Каждый одаренный ребенок стихийно занимается самообучением. Поэтому основная задача современной школы видится в выработке у школьников новой познавательной позиции: позиции самообучения.

К работе с одаренными детьми относятся различного рода творческие работы: написание рефератов, исследовательская работа, составление различных сборников, кроссвордов, задач по определенной тематике. Часто, давая ребятам тему и задание подобрать материал, учитель получает стопку листов бумаги с текстами из Интернета. Конечно, такая работа по поиску информации мало способствует развитию учащихся. Но и здесь учитель может получить положительный результат, если составить по этой теме вопросы, на которые ученики должны найти ответы в этой работе. Работа с текстом и станет первым навыком исследовательской деятельности , который усвоит ученик. Этот навык очень пригодится ему в дальнейшем.

У нас на сегодняшний день на 1 курсах всего З часа математики. И это при том, что мы должны пройти материал 10 и 11 класса общеобразовательной школы, где математика по 5часов в каждом классе. Летом мы сдаем экзамен по математике.

Поэтому, чтобы заинтересовать студентов у нас запланировано написание и защита рефератов, причем написание рефератов требуем от руки, т.к. студент хотя бы будет знать о чем идет речь в той работе, которую он приготовил. Даем такое задание как подготовить и защитить сообщение по определенной теме. Стараемся давать интересные темы, которые связаны либо с историей математики, либо с историей возникновения того или иного математического термина, либо с интересными и малоизвестными фактами из биографии великих ученых. Например: «Омар Хайям -математик и поэт», «Роль китайских десятичных дробей в истории науки», «Математика и кристаллография». «Математика на шахматной доске», «Древнеиндийская задача с пчелами и цветами», «Живопись и геометрия» и т.д.

Студенты лицейных групп занимаются исследовательской работой. Успешно прошла защита проектов Нади Мендеевой, Олеси Шобгоровой, Вики Астанковой по темам: «Исследование тригонометрической функции hello_html_me3fce38.gif», «Исследование логарифмической функции hello_html_46968d0e.gif - 12)», «Исследование показательной функции hello_html_m3ee6430b.gif - hello_html_m733a30c.gif».

Жанна Абих, работая над дипломной работой по теме «Элементы экономического воспитания в начальной школе», провела целую исследовательскую работу, изучая и анализируя русские народные сказки, отыскивая в них какие-либо элементы купли-продажи, обмена. По результатам проделанной работы составлены сборники: «3адачи в стихах», «Экономические мотивы в русских народных сказках».

Студенты 2-3 курсов школьного отделения, готовясь к практике в школе, на уроках по методике преподавания математики выполняют такие творческие задания по темам: «Логические задачи», «Сказки с геометрическим содержанием». Даем домашнее задание по изготовлению наглядного материала (геометрического и счетного), наборного полотна, абака. При подготовки такого типа домашнего задания, каждая студентка старается проявить фантазию и творчество. Многие студентки стараются составить свои пробные уроки, используя сюжеты сказок, любимых детьми. Такие как «Репка», «Два сапога», «Теремок», «Колобок» и т.д. Такие уроки очень нравятся не только детям, но и самим студентам. При этом они испытывают радость творчества.

Литература:

  1. Заир-Бек С.И., Муштавинская И.В. Развитие критического мышления на уроке: пособие для учителей общеобразовательных учреждений. – М.: Просвещение, 2011.-223с. : ил. – (Работаем по новым стандартам).

  2. Федеральный государственный образовательный стандарт основного общего образования: методические рекомендации/ М-во образования и науки Рос.Федерации. – М.Просвещение, 2011 -48с – (Стандарты второго поколения)

  3. Журнал «Начальная школа». 2002 г, №4,с 102

  4. Журнал «Начальная школа». 2004 г, №6, с 75

  5. Журнал «Начальная школа». 2013 г, №2, с 71


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 23.09.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров230
Номер материала ДВ-006234
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх