Инфоурок / Математика / Статьи / Статья «Приемы проблематизации в рамках системно-деятельностного подхода в обучение»

Статья «Приемы проблематизации в рамках системно-деятельностного подхода в обучение»

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов

Статья «Приемы проблематизации в рамках системно-деятельностного подхода в обучение»

ФИО автора: Зыбина Светлана Николаевна

Должность: учитель математики

Стаж работы: 20 лет

Место работы: муниципальное автономное общеобразовательное учреждение «лицей №8» г. Назарово Красноярского края

Когда людей станут учить не тому, что они должны думать, а тому, как они должны думать, то тогда исчезнут всякие недоразумения.

Г. Лихтенберг.

Среди широкой общественности бытует мнение о том, что в низком уровне сдачи ЕГЭ виноваты учителя, так как они плохо объясняют материал, не занимаются индивидуально после уроков, предвзято относятся к некоторым ученикам и т.д. Отчасти это правда. Недостаточный уровень профессионализма учителя – одна из основных причин неудачной сдачи экзаменов учащимися.

Для того чтобы совесть учителя была чиста нам приходиться постоянно учиться чему-то новому, делиться своим опытом работы. Я всегда с большим интересом перенимаю опыт других учителей, так как убеждена, что учитель обязан постоянно совершенствоваться. Самое страшное для меня как учителя увериться в том, что я все знаю, все умею, все понимаю. «Учиться всю жизнь, не успокаиваться на достигнутом, сомневаться, искать новые ответы на вечные вопросы: какой я? Достоин ли я? Достаточно ли моих знаний, чтобы не бояться возражений учащихся, не избегать детских вопросов, смело и убежденно вести диалог со своими учениками?»

За годы работы мои представления о том, чему учить и как надо учить школьников, многократно менялись. За последнее десятилетие произошло многое. Все меняется, жизнь другая, дети другие, запросы другие. И потому однозначно старые формы и методы работы тормозят развитие детей. Конечно, за период работы сложилась определенная манера преподавания, сформировались какие-то приоритеты, сломались некоторые стереотипы. Раньше, мне казалось, что обучить математике можно практически любого ученика: главное – грамотно и доступно преподнести ему учебный материал. Чем больше мы решим задач и примеров, тем лучше будет мой урок, тем лучше будут знать предмет дети. Но вскоре я поняла, что это только мечты. В реальности оказалось, что дети, знающие хорошо теоретический материал, решающие задачи учебника, занимающиеся в целом, на четыре и пять, на ЕГЭ показывают не очень высокие результаты, набирают 50-60 баллов. Анализ результатов ЕГЭ показал, что у этих учащихся средний уровень развития общеучебных умений, навыков и способов деятельности. Поэтому основной целью своей педагогической деятельности считаю формирование у школьников компетенции «учебная самостоятельность». Формированию данной компетенции и получению высоких результатов в обучении способствует, как показывает моя практика, использование системно-деятельностного подхода в обучении, в сочетание с современными образовательными технологиями. О моих учениках могу сказать, что они не боятся говорить и спрашивать то, что им не понятно, отстаивать и доказывать свою точку зрения, выступать публично на аудиторию. Кроме этого они показывают неплохие результаты при сдаче ГИА и ЕГЭ.

Результаты:

2006 год ЕГЭ – первый выпуск математического класса – средний балл 4,3 – 4 человека набрали более 80 баллов, один – 93 балла.

2009 год ЕГЭ – профильная группа – средний балл составил 62 – 9 человек набрали более 60 баллов, один 75 балла.

2010 год ГИА – математический класс – 100% качество (17 – «5», 10 – «4»)

2011 год ГИА – гуманитарный класс – 100% успеваемость, качество – 61%.

Основная идея системно-деятельностного подхода состоит в том, что новые знания не даются в готовом виде. Дети «открывают» их сами в процессе самостоятельной исследовательской деятельности. Задача учителя в этом случае не объяснять, показывать и рассказывать, а организовать деятельность детей, чтобы они сами додумались до решения проблемы урока и сами объясняли, как надо действовать в новых условиях. Для развития личности ученика (в том числе и для сдачи экзаменов) нужны не только знания, но, наверное, более важно умение и желание учиться, работать в команде, способность к самоизменению и саморазвитию на основе рефлексивной самоорганизации.

Один из наиболее важных моментов в использовании системно-деятельностного подхода — это умение учителя создать проблемную ситуацию на занятие, владения приемами организации таких ситуаций. Проблемная ситуация — это интеллектуальное затруднение человека, когда он не находит объяснения какому-то факту, явлению, процессу. Известные способы действия не обеспечивают достижения цели, и тогда человек начинает искать новые. Таким образом, проблемная ситуация — это ситуация конфликта между знаниями как прошлым опытом и незнанием того, как объяснить новые явления. Проблемная ситуация создается с целью введения в новую тему, с целью обнаружения нового свойства изучаемого объекта. Методические приемы, которые я использую для создания проблемных ситуаций:

  1. Подвожу школьников к противоречию, и предлагает им самим найти способ его разрешения. Например,

Тема урока: Округление периодической дроби. В начале урока проводится математический диктант на актуализацию знаний и умений, при выполнении последнего задания возникает проблема.

Задание: округлить дробь:

а) до десятков 83, 54

б) до единиц 36,2

в) до десятых 7,167

г) до сотен 416,2

д) до сотых 9,078

е) до тысячных 3/7

Вопрос: Как округлить обыкновенную дробь? Ваши предложения?

  1. Сталкиваю противоречия практической деятельности. Например,

Сообщается тема урока «Сумма внутренних углов треугольника». Дается задание:

Построить треугольник по заданным углам:

1). А=40°; В=30°; С=90°, 2) А=70°; В=50°; С=110°; 3) А=20°; В=50°; С=40°.

Учащиеся пытаются построить треугольники, но это сделать не удается. В каждом случае не выполняется условие о сумме внутренних углов треугольника. Создается проблемная ситуация:

Зависит ли сумма внутренних углов треугольника от его размеров, положения на плоскости, формы?

Дается задание: Начертить два треугольника, измерить с помощью транспортира внутренние углы и найти их сумму.

Выдвигается гипотеза: Сумма внутренних углов треугольника равна 180°. Доказывается соответствующая теорема.

III. Излагаю различные точки зрения на один и тот же вопрос.

IV. Предлагаю классу рассмотреть явление с различных позиций.

V. Побуждаю обучаемых делать сравнения, обобщения, выводы из ситуации, сопоставлять факты. Например,

Задание: 1) Решите задачи разными способами.

  1. В школьном саду посажены фруктовые деревья в 10 рядов. В каждом ряду посажено по 5 грушевых деревьев и по 7 яблонь. Сколько всего деревьев посажено в саду?

  2. Две автомашины одновременно выехали навстречу друг другу из двух пунктов. Скорость первой автомашины 80 км в час, скорость второй 60 км в час. Через 3 часа автомашины встретились. Какое расстояние между пунктами, из которых выехали автомашины?

  3. Найти площадь прямоугольного участка, состоявшего из двух прямоугольников.

hello_html_m5744528c.gifhello_html_b25d698.gif

3 м



4 м 2 м

2) Сравните:

а) первые способы решения;

б) вторые способы решения;

в) выражения, полученные при решении задач первым (вторым) способом;

г) выражение, полученные при решении задачи №1 (№2, №3) и 1 и 2 –м способами;

д) числовые значения выражений, полученные при решении задачи №1 (№2, №3) 1-м и 2-м способ.

Сделать выводы.

VI. Ставлю конкретные вопросы (на обобщение, обоснования, конкретизацию, логику рассуждения. Например,

На доске сделаны записи.

b-45:5 500:x=1500

a∙(56∙40) y∙10=1500

k:(1800:900) (x+500)∙2=2000

Вопросы: Почему так сгруппированы записи?

Какое задание можно дать к выражениям с переменной? (назвать порядок действий)

Какое задание можно дать к уравнениям? (решить, составить задачу по уравнению)

Решение какого уравнения вызвало затруднения? Почему?

Какую цель можно поставить на урок? (научиться решать сложные уравнения)

VII. Ставлю проблемные задачи (с недостаточными или избыточными исходными данными; с неопределенностью в постановке вопроса; с противоречивыми данными; с заведомо допущенными ошибками; с несколькими решениями). Например,

1)Учащимся предлагается решить задачу: Расстояние между пунктами А и В равно 100 км. Из А в В одновременно выехали два автомобиля. Первый проезжал за час на 10 км больше другого и прибыл в В на 50 мин раньше его. На сколько км/ч отличаются скорости автомобилей.

2)Задача решается после того, как ученик сформулирует вопрос (иногда к задаче можно поставить несколько вопросов). В скобках указывается пропущенный вопрос.

Например: На протяжении 155 м уложено 25м труб длиной 5 м и 8 м. (Сколько уложено тех и других труб?)

Мы сделали покупку. Если заплатить за нее трехрублевыми деньгами, то придется выдать восемью денежными знаками более, чем в том случае, если заплатить пятирублевыми. (Сколько стоит покупка?)

3)Например: Банка с медом весит 500 г. Такая же банка с керосином – 350г. Сколько весит пустая банка? (Нужно знать отношение веса меда и керосина)

4)Например: Сколькими способами можно уплатить 78 руб., имея денежные знаки трех- и пятирублевого достоинства?

В заключении хотелось бы отметить, что успех учебного занятия зависит не только от тщательности и культуры вашей подготовки, уважаемые коллеги, но еще и от ряда других условий. Вы ведь всякий раз входите в «живую» жизнь урока и потому будьте готовы, что реальная ситуация может потребовать от вас оперативного внесения корректив и «переналадки» так ладно скроенного проекта. Дерзайте! Педагогика - это не только технология, но и яркое творчество.



Общая информация

Номер материала: ДВ-572665

Похожие материалы