645916
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 1.410 руб.;
- курсы повышения квалификации от 430 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 90%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до конца апреля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

ИнфоурокМатематикаДругие методич. материалыСвязь задач на дроби и задач на проценты

Связь задач на дроби и задач на проценты

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

hello_html_m6b2d965c.gifhello_html_52bcd4ac.gifhello_html_m78c47829.gifhello_html_56190e83.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_1047403e.gifhello_html_52bcd4ac.gifhello_html_m78c47829.gifhello_html_1047403e.gif















Связь задач на дроби и задач на проценты









Учитель математики

Даудова Галия Газинуровна

МОУ СОШ № 125













Волгоград

2014



«Все новое – это хорошо забытое старое».



Из личного опыта известно, что задачи на дроби о проценты вызывают затруднения у учащихся. Сначала в 5 классе дети путают, где в задачах находить дробь от числа, а где число по его дроби. А затем в 6 классе та же история повторяется с задачами на проценты. Еще одна проблема: задачи на дроби и проценты изучаются непродолжительно, не повторяются углубленно в старших классах.

Именно поэтому основной задачей является за короткий период четко разграничить два понятия «дробь от числа» и «число по его дроби» (2 вида задач).

При изучении задач на дроби в 5 классе во время обобщения двух видов задач ученикам полезно дать следующую схему:



Задачи на дроби





Известно сколько всего? (целое)



нет

да

Делим число на дробь

Умножаем число на дробь










С помощью этой схемы удобно решать такие задачи.

Примеры:

  1. Урок длится 45 мин. 3/5 части урока ученики писали самостоятельную работу. Сколько времени она длилась?







  • Составляем условие:



Всего – 45 мин

с/р - ? 3/5 от

  • Решение:

- Известно сколько всего минут длится урок? (да)

- Что делаем в этом случае согласно схеме? (умножаем)

45∙3/5 = 27 (мин)

∙ ∙ ∙

  1. В аквариум налили 6 л воды, заполнив 2/5 части его объема. Сколько литров воды вмещает аквариум?

  • Составляем условие:



Весь аквариум - ? л

Заполнили – 6 л – 2/5

  • Решение:

- Известно сколько всего воды вмещает аквариум? (нет)

- Что делаем в этом случае согласно схеме? (делим)

6:2/5 = 15 (л)

∙ ∙ ∙

Порешав некоторое количество таких задач, учащиеся уже интуитивно будут чувствовать, где известно целое; смогут решать задачи даже в тех случаях, где конкретно и не задашь вопрос из схемы.

Например: Сыну 10 лет. Его возраст составляет 2/7 возраста отца. Сколько лет отцу? (не задашь вопрос «сколько всего…»; интуитивно: целое – то, что больше, следовательно возраст отца - «целое»).

Аналогично в 6 классе при изучении задач на проценты вводится та же схема с небольшим дополнением:

















Задачи на дроби







нет

да

Делим число на дробь

Выражаем процент в виде дроби

Известно сколько всего? (целое)

Умножаем число на дробь
















«Небольшое дополнение» - это «выражаем процент в виде дроби», что не вызывает особых трудностей у шестиклассников. А дальше задается уже знакомый вопрос с такими же исходами. Таким образом, тема для детей становится уже известной, что облегчает ее усвоение.

Пример:

Ученик прочитал 138 страниц, что составляет 23 % числа всех страниц в книге. Сколько страниц в книге?

  • Составляем условие:

Всего - ?

Прочитал – 138 стр – 23 %

  • Решение:

- Выражаем процент дробью:

1) 23: 100 = 23/100

- Известно сколько всего страниц? (нет)

- Что делаем в этом случае согласно схеме? (делим)

2) 138:23/100 = 600 (стр)

∙ ∙ ∙

Итак, для того, чтобы учащиеся быстро освоили сложные темы, нужно дать им четкий алгоритм действий. В данной статье был предложен алгоритм решения двух видов задач в виде схемы, понятной для ученика 5-6 класса и показана связь между темами.

Каждому учителю предлагается найти такие связи и придумать схожие алгоритмы ( желательно вместе с учениками), тем самым упростив понимание для ребенка.





Краткое описание документа:

Из личного опыта известно, что задачи на дроби о проценты вызывают затруднения у учащихся. Сначала в 5 классе дети путают, где в задачах находить дробь от числа, а где число по его дроби. А затем в 6 классе та же история повторяется с задачами на проценты. Еще одна проблема: задачи на дроби и проценты изучаются непродолжительно, не повторяются  углубленно в старших классах.

 

    Именно поэтому основной задачей является за короткий период четко разграничить два понятия «дробь от числа» и «число по его дроби» (2 вида задач).

В статье проведена связь между понятиями и алгоритмы решения таких задач. Четкий алгоритм, выведенный самими учащимися с помощью учителя, облечает решение задач.

Общая информация

Номер материала: 114570

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.