Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Тема «Решение логарифмических уравнений»
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Тема «Решение логарифмических уравнений»

библиотека
материалов




Тема «Решение логарифмических уравнений»

Преподаватель математики ПУ№3

Туаева З.С.

2015г.



Тема «Решение логарифмических уравнений»


Цель урока: повторить понятие и свойства логарифма; изучить способы решения логарифмических уравнений и закрепить их при выполнении упражнений.

Задачи:

- обучающие: повторить определение и основные свойства логарифмов, уметь применять их в вычислении логарифмов, в решении логарифмических уравнений;

-развивающие: формировать умение решать логарифмические уравнения;

-воспитательные: воспитывать настойчивость, самостоятельность; прививать интерес к предмету

Тип урока: урок изучения нового материала.

Пед. технологии: информационно-коммуникационные, коллективная система обучения – вариационная пара, разноуровневое обучение.

Необходимое техническое оборудование: компьютер, проектор, экран.


Структура и ход урока:

  1. Организационный момент.

Проверка готовности обучающихся и кабинета к занятию. Объявление темы.


  1. Устная работа.

Закрепление понятия логарифма, повторение его основных свойств и свойств логарифмической функции:

1. Разминка по теории:

1. Дайте определение логарифма.

2. От любого ли числа можно найти логарифм?

3. Какое число может стоять в основании логарифма?

4. Функция y=log0,8x является возрастающей или убывающей? Почему?

5. Какие значения может принимать логарифмическая функция?

6. Какие логарифмы называют десятичными, натуральными?

7. Назовите основные свойства логарифмов.

8. Можно ли перейти от одного основания логарифма к другому? Как это сделать?

2. Работа по карточка:

Карточка №1:

а)  Представьте число « а»  в виде логарифма по основанию « в»

Задание:                             Ответ:

hello_html_2b0c161c.gif  hello_html_26910946.gif                       hello_html_m27a5616c.gif
а = 0, в = 1,05                     hello_html_m32b81ccd.gif
а = 1  в = hello_html_224c06e7.gif                     hello_html_m2b12f762.gif
а = 3, в = 2                         1 = hello_html_m3c6f22a4.gifhello_html_224c06e7.gif hello_html_m27618eb7.gif
а = 0, в = 10                         2 = hello_html_m50cd8aa2.gif9
а = 2, в = 4                           0 = hello_html_mc5d7d7d.gif1 Карточка №2:

б) Найдите область определения функций :

Задание:                               Ответ:

Y =hello_html_25dac957.gif(x+3)                   X< 2
Y =
hello_html_4752babc.gif (2–x)                   X < 0
Y =
hello_html_mc5d7d7d.gif (–x )               0  <   X< 9, X # 1
Y = 
hello_html_5a6f3b9.gif            X> –3

.

3. Фронтальный опрос класса (сопровождается слайдами презентации)

Вычислить:

216

lоg3 √3

log71

log5 (1/625)

log211 - log 244

  1. log814 + log 832/7

  2. log35 ∙ log53

  3. 5 log5 49

  4. 8 lоg85 - 1

  5. 25 log 510

4. Сравнить числа:

  1. log½ е и log½π;

  2. log2 √5/2 и log2√3/2.

5. Выяснить знак выражения log0,83 · log62/3


Изучение нового материала: Демонстрируется на экране высказывание:

«Уравнение – это золотой ключ, открывающий все математические сезамы».
Современный польский математик С. Коваль.

Попробуйте сформулировать определение логарифмического уравнения. (Уравнение, содержащее неизвестное под знаком логарифма).

Рассмотрим простейшее логарифмическое уравнение: log аx = b

(где а>0, a ≠ 1 ). Так как логарифмическая функция возрастает (или убывает) на множестве положительных чисел и принимает все действительные значения, то по теореме о корне следует, что для любого b данное уравнение имеет, и притом только одно, решение, причем положительное.

Вспомните определение логарифма. (Логарифм числа х по основанию а – это показатель степени, в которую надо возвести основание а, чтобы получить число х). Из определения логарифма сразу следует, что аb является таким решением.

Запишите заголовок: Методы решения логарифмов.

Группа делиться на микрогруппы по 4 человека. Каждый из четырех членов группы выбирает один из способов решения, разбирается с ним (при затруднении можно обратиться к преподавателю), проводит взаимообучение с остальными тремя товарищами. Далее вместе прорешивают четыре примера, ответы проверяются у преподавателя.


  1. Решение уравнений на основании определения логарифма.

имеет решение .

На основе определения логарифма решаются уравнения, в которых:

  • по данным основаниям и числу определяется логарифм,

  • по данному логарифму и основанию определяется число,

  • по данному числу и логарифму определяется основание.




Ответ: 7






Ответ: 8





Ответ: 3


  1. Метод потенцирования.

Под потенцированием понимается переход от равенства, содержащего логарифмы, к равенству, не содержащему их т.е. , то , при условии, что .

Пример: Решите уравнение


3

- неверно

Ответ: решений нет.


ОДЗ:



  1. Уравнения, решаемые с помощью применения основного логарифмического тождества.

Пример: Решите уравнение



не принадлежит ОДЗ

принадлежит ОДЗ

Ответ: х=2


ОДЗ:



  1. Метод приведения логарифмов к одному и тому же основанию.

Решите уравнение: hello_html_78f9bbd0.png

Решение: ОДЗ: х>0. Перейдем к основанию 3.

hello_html_m56551b9c.png  или hello_html_m4fc39a80.png; hello_html_m12942071.png.

Ответ: 9.


  1. Первичное закрепление:

Ответ: х = 2


Ответ: х = 5/3


Ответ: х = 1


  1. Разноуровневые задания

№№513(а, б), 514(а, б) 515(а, б), 518(а, б), 519(а, б)


  1. Подведение итогов, рефлексия (раздать кружочки, на которых ребята отмечают свое настроение рисунком). Определить метод решения уравнения:

№№513(в, г), 515(в, г), 518(г), 519(в)


  1. Домашнее задание: 513(в, г), 515(в, г), 518(г), 519(в)


Автор
Дата добавления 21.11.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров73
Номер материала ДБ-377270
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх