Инфоурок Другое КонспектыТема урока: «Аксиома параллельных прямых»

Тема урока: «Аксиома параллельных прямых»

Скачать материал

 

Тема урока: «Аксиома параллельных прямых»

 Цели: ввести понятие аксиомы; рассмотреть аксиому параллельных прямых и её следствия; научить учащихся решать задачи на применение аксиомы параллельных прямых.

I.  Анализ результатов самостоятельной работы.

 II. Изучение нового материала.

Впервые термин «аксиома» встречается у Аристотеля (384322 до н. э.) и переходит в математику от философов Древней ГрецииЕвклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах «Начал» Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно, переписчики придерживались разных воззрений на различие этих понятий.

Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».

Толчком к изменению восприятия аксиом послужили работы русского математика Николая Лобачевского о неевклидовой геометрии, впервые опубликованные в конце 1820-х годов. Ещё будучи студентом, он пытался доказать пятый постулат Евклида, но позднее отказался от этого. Лобачевский сделал вывод о том, что пятый постулат является лишь произвольным ограничением, которое можно заменить другим ограничением. Если бы пятый постулат Евклида был доказуем, то Лобачевский столкнулся бы с противоречиями. Однако, хотя новая версия пятого постулата и не была наглядно-очевидной, она полностью выполняла роль аксиомы, позволяя построить новую непротиворечивую систему геометрии.

Сперва идеи Лобачевского не были признаны (например, о них отрицательно отзывался академик Остроградский). Позднее, когда Лобачевский опубликовал работы на других языках, он был замечен Гауссом, который тоже имел некоторые наработки в области неевклидовой геометрии. Он косвенно высказал восхищение этой работой. Настоящее признание геометрия Лобачевского получила лишь через 10-12 лет после смерти автора, когда была доказана её непротиворечивость в случае непротиворечивости геометрии Евклида. Это привело к революции в математическом мире. Гильберт развернул масштабный проект по аксиоматизации всей математики для доказательства её непротиворечивости. Его планам не суждено было сбыться из-за последовавших теорем Гёделя о неполноте. Однако это послужило толчком к формализации математики. Например, появились аксиомы натуральных чисел и их арифметики, работы Кантора по созданию теории множеств. Это позволило математикам создавать строго истинные доказательства для теорем.

Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории — аксиомы могут быть достаточно произвольными, они не обязаны быть очевидными. Единственным неизменным требованием к аксиоматическим системам является их внутренняя непротиворечивость. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом[2]. В соответствии с критерием Поппера, единственный отрицательный пример опровергает теорию и, как следствие, доказывает ложность системы аксиом, при этом множество подтверждающих примеров лишь увеличивает вероятность истинности системы аксиом.

2. Записать в тетрадях:

Аксиомами называются те основные положения геометрии, которые принимаются в качестве исходных положений, на основе которых доказываются далее теоремы и строится вся геометрия.

3. Предложить учащимся задачу, решение которой дано в начале п. 28: через точку М, не лежащую на прямой а, провести прямую, параллельную прямой а. Решение этой задачи доказывает существование прямой, проходящей через данную точку и параллельной данной прямой.

4. Вопрос к учащимся: Сколько таких прямых можно провести?

5. Рассказать учащимся о том, что в геометрии Евклида, изложенной им в книге «Начала» ответ на данный вопрос следует из знаменитого пятого постулата, и этот ответ таков: через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной. Пятый постулат знаменит тем, что долгие годы его пытались доказать на основе остальных аксиом Евклида. И лишь в прошлом веке, во многом благодаря великому русскому математику Н. И. Лобачевскому, было доказано, что пятый постулат не может быть выведен из остальных аксиом. Поэтому утверждение о единственности прямой, проходящей через данную точку параллельно данной прямой, принимается в качестве аксиомы.

6. Заострить внимание учащихся на том, что в аксиоме утверждается, что через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной (единственность прямой), а существование такой прямой доказывается.

 

III. Закрепление изученного материала.

1. Устно решить задачи № 196, 197.

Указание: при решении задачи № 197 полезно на рисунке показать учащимся два возможных случая расположения прямых:

1) все четыре прямые пересекают прямую р;

2) одна из четырех прямых параллельна прямой р, а три другие прямые пересекают ее.

Эти два случая иллюстрируют ответ на вопрос задачи: по крайней мере, три прямые пересекают прямую р.

2. Разъяснение смысла понятия «следствия».

Записать в тетрадях: следствиями называются утверждения, которые выводятся непосредственно из аксиом или теорем.

3. Рассмотреть следствия 1° и 2° из аксиомы параллельных прямых.

4. Решить задачи № 198, 200, 218.

Решение задачи № 218: отметим произвольную точку, не лежащую на прямой в, и проведем через нее прямую с, параллельную прямой в. Так как прямая а пересекает прямую в, то она пересекает и прямую с. Таким образом, прямая с пересекает прямую а и параллельна прямой в.

5. Решить задачу № 219*.

Решение:

Предположим, что прямые а и в не параллельны, то есть пересекаются. Тогда можно провести прямую с, которая пересекает прямую а и не пересекает прямую в (задача № 218). Но это противоречит условию задачи. Значит, наше предположение неверно и а || в.

 IV. Итоги урока.

Домашнее задание: изучить пункты 27 и 28; ответить на вопросы 7-11 на с. 68 учебника; решить задачи № 217, 199.

 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал
Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 003 979 материалов в базе

Материал подходит для УМК

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 11.01.2022 308
    • DOCX 18.2 кбайт
    • Рейтинг: 5 из 5
    • Оцените материал:
  • Настоящий материал опубликован пользователем Цупрун Ольга Николаевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Цупрун Ольга Николаевна
    Цупрун Ольга Николаевна
    • На сайте: 6 лет и 11 месяцев
    • Подписчики: 0
    • Всего просмотров: 1914859
    • Всего материалов: 1921

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой