Инфоурок Другое КонспектыТеорема Чевы и Менелая

Теорема Чевы и Менелая

Скачать материал

ТЕОРЕМЫ ЧЕВЫ И МЕНЕЛАЯ

                Теорема Чевы

Большинство замечательных точек треугольника могут быть по­лучены при помощи следующей процедуры. Пусть имеется некоторое правило, согласно которому мы сможем выбрать определенную точку A1, на стороне BC (или её про­должении) треугольника ABC (например, выберем середину этой стороны). Затем построим аналогичные точки B1, C1  на двух других сторонах треугольника (в нашем примере еще две середи­ны сторон). Если правило выбора удачное, то прямые AA1, BB1, CC1  пересекутся в некоторой точке Z (выбор середин сторон в этом смысле, конечно, удачный, так как медианы треугольника пересекаются в одной точке).

Хотелось бы иметь какой-нибудь общий метод, позво­ляющий по положению точек на сторонах треугольника определять, пересекается ли соответствующая тройка прямых в одной точке или нет.

Универсальное условие, «закрывшее» эту проблему, нашёл в 1678 г. итальянский инженер Джованни Чева.

Определение. Отрезки, соеди­няющие вершины треугольника с точками на противолежащих сторонах (или их продолжениях), называют чевианами, если они пересекаются в одной точке.

Возможны два варианта расположения чевиан. В одном варианте точка

 

 

 

 

 

 

пересечения – внутренняя, а концы чевиан лежат на сторонах треугольника. Во втором варианте точка пересечения внешняя, конец одного чевиана лежит на стороне, а у двух других чевиан концы лежат на продолжениях сторон (смотри чертежи).

 Теорема 3. (Прямая теорема Чевы) В произвольном треугольнике АВС  на сторонах ВС, СА, АВ или их продолжениях взяты соответственно точки А1, В1, С1, такие, что прямые АА1, ВВ1, СС1 пересекаются в некоторой общей точке, тогда

.

Доказательство: известно несколько оригинальных доказательств теоремы Чевы, мы рассмотрим доказательство, основанное на двукратном применении теоремы Менелая. Запишем соотношение теоремы Менелая первый раз для треугольника ABB1 и секущей CC1 (точку пересечения чевиан обозначим Z):

,

а второй раз для треугольника B1BC и секущей AA1:

.

Перемножив два этих отношения, проведя необходимые сокращения получим соотношение, содержащееся в утверждении теоремы.

Теорема 4. (Обратная  теорема Чевы). Если для выбранных на сторонах треугольника ABC или их продолжениях точек A1, В1 и C1 выполняется условие Чевы:

*                                ,

то прямые AA1, BB1 и CC1 пересекаются в одной точке.

Доказательство этой теоремы проводится методом от противного, также, как доказательство теоремы Менелая.

Рассмотрим примеры применения прямой и обратной теорем Чевы.

Пример 3. Докажите, что медианы треугольника пересекаются в одной точке.

Решение. Рассмотрим соотношение

для  вершин треугольника и середин его сторон. Очевидно, что в каждой дроби в числителе и знаменателе стоят равные отрезки, поэтому все эти дроби равны единице. Следовательно, выполнено соотношение Чевы, поэтому, по обратной теореме, медианы пересекаются в одной точке.

Теорема (теорема Чевы). Пусть точки A_1,B_1,C_1 лежат на сторонах BC,AC и AB треугольника ABC соответственно. Пусть отрезки AA_1,BB_1 и CC_1 пересекаются в одной точке. Тогда

\displaystyle \frac{AC_1}{C_1B}\cdot\frac{BA_1}{A_1C}\cdot\frac{CB_1}{B_1A}=1

(обходим треугольник по часовой стрелке).

Доказательство. Обозначим через O точку пересечения отрезков AA_1,BB_1 и CC_1. Опустим из точек C и A перпендикуляры на прямую BB_1до пересечения с ней в точках K и L соответственно (см. рисунок).

Поскольку треугольники AOB и BOC имеют общую сторону OB, то их площади относятся как высоты, проведенные на эту сторону, т.е. AL и CK:

\displaystyle \frac{S_{AOB}}{S_{BOC}}=\frac{AL}{CK}=\frac{AB_1}{B_1C} .

Последнее равенство справедливо, так как прямоугольные треугольники AB_1L и CB_1K подобны по острому углу.

Аналогично получаем

\displaystyle \frac{S_{AOC}}{S_{BOC}}=\frac{AC_1}{C_1B} и \displaystyle\frac{S_{BOA}}{S_{AOC}}=\frac{BA_1}{A_1C} .

Перемножим эти три равенства:

\displaystyle\frac{AC_1}{C_1B}\cdot\frac{BA_1}{A_1C}\cdot\frac{CB_1}{B_1A}=\frac{S_{AOC}}{S_{BOC}}\cdot\frac{S_{AOB}}{S_{AOC}}\frac{S_{BOC}}{S_{AOB}}=1 ,

что и требовалось доказать.

 

Про медианы:

1. Разместим в вершинах треугольника ABC единичные массы.
2. Центр масс точек A и B находится посередине AB. Центр масс всей системы должен находиться на медиане к стороне AB, так как центр масс треугольника ABC - это центр масса центра масс точек A и B, и точки C.
(запутанно получилось)
3. Аналогично - ЦМ должен лежать на медиане к сторонам AC и BC
4. Так как ЦМ - единственная точка, то, следовательно все эти три медианы должны пересекаться в ней.

Кстати, сразу же следует, что пересечением они делятся в отношении 2:1. Так как масса центра масс точек A и B равна 2, а масса точки C равна 1, следовательно, общий центр масс согласно теореме о пропорции будет делить медиану в отношении 2/1.

Спасибо большое, доступно изложено, думаю, будет не лишним представить док-во и при помощи методов геометрии масс, например:
Прямые AA1 и CC1 пересекаются в точке O; AC1 : C1B = p и BA1 : A1C = q. Нужно доказать, что прямая BB1 проходит через точку O тогда и только тогда, когда CB1 : B1A = 1 : pq. 
Поместим в точки A, B и C массы 1, p и pq соответственно. Тогда точка C1 является центром масс точек A и B, а точка A1 - центром масс точек B и C. Поэтому центр масс точек A, B и C с данными массами является точкой O пересечения прямых CC1 и AA1. С другой стороны, точка O лежит на отрезке, соединяющем точку B с центром масс точек A и C. Если B1 - центр масс точек A и C с массами 1 и pq, то AB1 : B1C = pq : 1. Остается заметить, что на отрезке AC существует единственная точка, делящая его в данном отношении AB1 : B1C.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2. Теорема Чевы

Отрезок, соединяющий вершину треугольника с некоторой точкой на противоположной стороне, называется чевианой. Таким образом, если в треугольнике ABC X, Y и Z — точки, лежащие на сторонах BC, CA, AB соответственно, то отрезки AX, BY, CZ являются чевианами. Этот термин происходит от имени итальянского математика Джованни Чевы, который в 1678 году опубликовал следующую очень полезную теорему:

Теорема 1.21. Если три чевианы AX, BY, CZ (по одной из каждой вершины) треугольника ABC конкурентны, то

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 .

ABCPXYZ

Рис. 3.

Когда мы говорим, что три прямые (или отрезка) конкурентны, то мы имеем в виду, что все они проходят через одну точку, которую обозначим через P. Для доказательства теоремы Чевы вспомним, что площади треугольников с равными высотами пропорциональны основаниям треугольников. Ссылаясь на рисунок 3, мы имеем:

|BX| |XC| = SABX SAXC = SPBX SPXC = SABX− SPBX SAXC− SPXC = SABP SCAP .

Аналогично,

|CY| |YA| = SBCP SABP , |AZ| |ZB| = SCAP SBCP .

Теперь, если мы перемножим их, то получим

|BX| |XC| · |CY| |YA| · |AZ| |ZB| = SABP SCAP · SBCP SABP · SCAP SBCP =1 .

Теорема, обратная к этой теореме, также верна:

Теорема 1.22. Если три чевианы AX, BY, CZ удовлетворяют соотношению

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 ,

то они конкурентны.

Чтобы это показать, предположим, что две первые чевианы пересекаются в точке P, как и прежде, а третья чевиана, проходящая через точку P, будет CZ′. Тогда, по теореме 1.21,

|BX| |XC| · |CY| |YA| · |AZ′| |Z′B| =1 .

Но по предположению

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 .

Следовательно,

|AZ| |ZB| = |AZ′| |Z′B|  ,

точка Z′ совпадает с точкой Z, и мы доказали, что отрезки AX, BY и CZ конкурентны ([13], стр. 54 и [42], стр, 48, 317).

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Теорема Чевы и Менелая"

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Директор по маркетингу (тур. агенства)

Получите профессию

Экскурсовод (гид)

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 662 863 материала в базе

Скачать материал

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 01.11.2016 10060
    • DOCX 136.5 кбайт
    • 22 скачивания
    • Рейтинг: 5 из 5
    • Оцените материал:
  • Настоящий материал опубликован пользователем Хасенова Тилеужан Сериковна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Хасенова Тилеужан Сериковна
    Хасенова Тилеужан Сериковна
    • На сайте: 8 лет и 7 месяцев
    • Подписчики: 0
    • Всего просмотров: 13114
    • Всего материалов: 5

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Фитнес-тренер

Фитнес-тренер

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Специалист в области охраны труда

72/180 ч.

от 1750 руб. от 1050 руб.
Подать заявку О курсе
  • Сейчас обучается 33 человека из 20 регионов
  • Этот курс уже прошли 153 человека

Курс профессиональной переподготовки

Организация деятельности библиотекаря в профессиональном образовании

Библиотекарь

300/600 ч.

от 7900 руб. от 3650 руб.
Подать заявку О курсе
  • Сейчас обучается 282 человека из 66 регионов
  • Этот курс уже прошли 849 человек

Курс профессиональной переподготовки

Руководство электронной службой архивов, библиотек и информационно-библиотечных центров

Начальник отдела (заведующий отделом) архива

600 ч.

9840 руб. 5600 руб.
Подать заявку О курсе
  • Этот курс уже прошли 25 человек

Мини-курс

Продажи и самопрезентация в социальных сетях

5 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 111 человек из 40 регионов
  • Этот курс уже прошли 24 человека

Мини-курс

Финансовое руководство: от планирования до успеха

5 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 43 человека из 24 регионов
  • Этот курс уже прошли 15 человек

Мини-курс

Социальные и правовые аспекты эпохи Просвещения: влияние на образование сегодня

4 ч.

780 руб. 390 руб.
Подать заявку О курсе