Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Тесты / Тесты на тему: "комбинаторика"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Тесты на тему: "комбинаторика"

библиотека
материалов


Элементы комбинаторики

Задача 1: У Незнайки 2 конверта – обычный и авиа и 3 марки – прямоугольная, квадратная треугольная. Сколькими способами он может выбрать марку, чтобы отправить письмо?

Ответ: 6 способов.

Задача 2: У кролика 2 табуретки: красная и зеленая. К нему пришли в гости Винни -Пух и Пятачок. Сколькими способами можно рассадить гостей?

Ответ: 2 способами.

Задача 3: Сколько существует вариантов для того, чтобы разместить на подоконнике цветы – ромашку, фиалку, гвоздику в разной последовательности?

Ответ: 6 вариантов или перестановок.

Задача 4: Учащиеся изучают 3 предмета. В понедельник у них 2 урока и оба разные. Сколькими способами можно составить расписание?

Ответ: соединение из 3 элементов по 2, в независимости от порядка их размещения, т.е. 6 способами.

Задача 5: В городе проводится первенство по футболу между 6 командами. Сколько состоится матчей?

Ответ: соединение из 6 элементов по 2, но каждое соединение должно отличаться хотя бы одним элементом, т.е. состоится 16 матчей.

Задача 6: Сколько различных трехцветных флагов можно сделать, комбинируя синий, красный и белый цвета?

Ответ: перестановки, 6 способов.

Задача 7: Сколькими различными способами можно избрать из 15 человек делегацию в составе 3 человек?

Ответ: сочетания, 455 способами.

Задача 8: Из ящика, где находится 15 шаров, нумерованных последовательно от 1 до 15 требуется вынуть 3 шара. Определить число возможных комбинаций при этом?

Ответ: размещения, 2830 способами.

Задача 9: Сколько трехзначных чисел можно составить из цифр 1, 2, 3, если каждая цифра входит в изображение числа только 1 раз?

Ответ: перестановки, 6 способов.

Задача 10: Сколькими способами можно разместить 6 пассажиров в четырехместной каюте?

Ответ: размещения из 6 элементов по 2, 360 способами.

Задача 11: Сколькими способами можно выбрать 2 детали из ящика, содержащего 10 деталей?

Ответ: сочетания из 10 элементов по 2, 45 способами.

Задача 12: Сколько различных соединений можно составить из букв слова «МИССИСИПИ»?

Ответ: перестановки, 2520 соединений.

Задача 13: Сколькими различными способами можно избрать из 15 человек делегацию в составе 3 человек?

Ответ: размещения из 15 по 3, 2730 способами.

Задача 14: Бригадир должен отправить на работу бригаду из 4 человек. Сколько бригад по 4 человека в каждой можно составить из 13 человек?

Ответ: сочетания из 13 по 4, 715 бригад.

Задача 15: При встрече 16 человек обменялись рукопожатиями. Сколько всего было сделано рукопожатий?

Ответ: сочетания из 16 по 2, 120 рукопожатий.

Задача 16: Сколько нужно взять элементов, чтобы число размещений из них по 4 было в 12 раз больше, чем число размещений из них по 2.

Ответ: hello_html_7bac2e41.gif не подходит.

Задача 17: Группа учащихся в 30 человек пожелала обменяться своими фотокарточками. Сколько всего фотокарточек потребовалось для этого?

Ответ: сочетание из 30 по 2, 435 фотокарточек.

Задача18: Сколько различных плоскостей можно провести через 10 точек, если никакие три из них не лежат на одной прямой и никакие четыре точки не лежат в одной плоскости?

Ответ: сочетание из 10 по 3; 120 точек

Задача 19: Сколько существует различных семизначных телефонных номеров?

Ответ: 107.

Задача 20: Сколько существует различных семизначных телефонных номеров, если в каждом номере нет повторяющихся цифр?

Ответ: размещение из 10 по 7.

Задача 21: Сколько существует таких перестановок 7 учеников, при которых 3 определенных ученика находятся рядом друг с другом?Ответ: 720.

Задача 22: На книжной полке стоит собрание сочинений в 30 томах. Сколькими различными способами их можно переставить, чтобы: а) тома 1 и 2 стояли рядом; б) тома 3 и 4 рядом не стояли?

Ответ: а)2∙29!; б)28∙29!

Задача 23: Собрание из 40 человек избирает председателя, секретаря и 5 членов комиссии. Сколько различных комиссий может быть составлено?

Ответ: председатель и секретарь образуют выборку без повторений, состоящую из 2 элементов исходного множества, содержащего40 элементов. 5 членов комиссии образуют выборку без повторений некоторого состава из исходного множества, содержащего 38 членов. hello_html_m7c027aad.gif.

Задача 24: Из 10 роз и 8 георгинов нужно составить букет, содержащий 2 розы и 3 георгина. Сколько можно составить различных букетов?

Ответ: hello_html_16a3bdda.gif.

Задача 25: В колоде 36 карт из них 4 туза. Сколькими способами можно сдать 6 карт так, чтобы среди них было 2 туза?

Ответ: hello_html_m61a8bdba.gif.

Задача 26: Строительная бригада состоит из 2 маляров, 3 штукатуров и 1 столяра. Сколько различных бригад можно создать из рабочего коллектива, в котором 15 маляров, 10 штукатуров и 5 столяров?

Ответ: hello_html_60cb89e6.gif.

Задача 27: Сколько окружностей можно провести через 10 точек, из которых никакие 4 не лежат на одной окружности и никакие 3 не лежат на одной прямой, если каждая окружность проходит через 3 точки?

Ответ: 120.

Задача 28: Сколькими способами из колоды в 52 кары можно вынуть 6 карт, содержащих туз и короля одной масти?

Ответ: hello_html_71fe7793.gif

Задача 29: В теннисном турнире участвуют 10 мужчин и 6 женщин. Сколькими способами можно составить 4 смешанные пары?

Ответ: hello_html_m59487a65.gif.

Задача 30: Сколько различных наборов по 8 пирожных в каждом можно составить, используя 4сорта пирожных?

Ответ: выбор заданным числом повторений объема 8 набирается из 4 групп однородных элементов, т.е. 165 наборов.

Задача 31: 12 ученикам выданы 2 варианта контрольной работы. Сколькими способами можно посадить учеников в 2 ряда так, чтобы у сидящих рядом не было одинаковых вариантов, а у сидящих друг за другом был один и тот же вариант?

Ответ: число перестановок левых мест ряда следует умножить на число перестановок правых мест. Учесть возможность смены левых мест на правые, т.е. 2 (6!)2.

Задача 32: Найти разложении биномов: а) (х+а)6;б) (х+2)5.

Решение: воспользоваться формулой бинома Ньютона для n=6:

hello_html_537c5886.gif

Воспользоваться формул бинома Ньютона для n=5, получим

hello_html_5ff038f.gif

Задача 33: Найти: а) четвертый член разложения (а+3)7; б) средний член разложения (hello_html_m7f027d0b.gif)8hello_html_m53d4ecad.gif

Ответ: а) биномиальный коэффициент будет hello_html_68c16bd1.gif, тогда четвертый член разложения – hello_html_69af5e80.gif; б) всего в этом разложении содержится 9 слагаемых. Значит, средним будет пятое произведение – 70а2b2.

Задача 34: Найти член разложения (a+b)9, содержащий a3.

Ответ: Это будет 4 элемент разложения бинома Ньютона, он равен 84a3b3.

Задача 35: Найти сумму биномиальных коэффициентов, если степень бинома равна 10.

Ответ: 1024; разложить по формуле бинома выражение (1+1)10.

Задача 36: Найти номер члена разложения (x+x-2)12, не содержащего x.

Ответ: Номер 4.

Задача 37: Найти номер наибольшего члена разложения (0,9+0,1)100.

Ответ: Наибольшим членом разложения является десятый.

Задача 38: Найти член разложения (hello_html_m53d4ecad.gifhello_html_7dcfb7a6.gif)8, который содержит x2 .

Ответ: 28x2a-4.

Задача 39: Найти наибольший член разложения (hello_html_m12a6ca7.gif)20.

Ответ: 314925∙105 .

Задача 40: Найти члены, не содержащие иррациональности в разложении

( hello_html_74f99d9c.gif)24.

Ответ: hello_html_m7078abe6.gif.





Литература

  1. Выгодский М.Я., Справочник по элементарной математике; М.: «Наука», 1965г., 424с., с илл.

  2. Цыпкин А.Г., Пинский А.И., Справочное пособие по методам решения задач по математике (для средней школы) М.: «Наука», 1983г.,416с.

  3. Шарыгин И.Ф., Факультативный курс по математике (решение задач); М.: «Просвещение», 1989г.; 252с., с илл.

  4. Гусев В.А., Орлов А.И., Розенталь А.Л., Внеклассная работа по математике в школе (книга для учителя) М.: «просвещение», 1984г.;286с., с илл.


Автор
Дата добавления 26.11.2015
Раздел Математика
Подраздел Тесты
Просмотров3025
Номер материала ДВ-194909
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх