Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Тригонометриялық теңдеулерді шешу

Тригонометриялық теңдеулерді шешу


  • Математика

Поделитесь материалом с коллегами:



Тригонометриялық теңдеулерді шешу

Категориясы: Математика

Тригонометриялық теңдеулерді шешу жолдарын, әр түрлі әдістерін қарастыру. Теңдеулерді шешуге керекті формулаларды тиімді пайдалана білуге, тригонометриялық теңдеулер шешімін толық жаза білуге дағдыландыру. Білігі мен білім ін практикада қолдану дағдысын қалыптастыру.



Сабақтың тақырыбы: Тригонометриялық теңдеулерді шешу.

Сабақтың мақсаты: Тригонометриялық теңдеулерді шешу жолдарын, әр түрлі әдістерін қарастыру. Теңдеулерді шешуге керекті формулаларды тиімді пайдалана білуге, тригонометриялық теңдеулер шешімін толық жаза білуге дағдыландыру. Білігі мен білім ін практикада қолдану дағдысын қалыптастыру.

Сабақтың көрнекілігі: Тригонометриялық формулалар, интерактивті тақта, тригонометриялық лото ойыны, т. б.



Сабақтың барысы:

1. Ұйымдастыру жұмысы.

2. “Тригонометрия” лото ойыны

3. sinx=a. cosx=a. tqx=a. ctqx=a теңдеулерінің шешімдерінің формулалары.

4. Ауызша есептер.

5. Класта есептер шығару (оқулықпен жұмыс)

6. Үйге тапсырма

7. Қорытындылау.



ІІ. Тригонометриялық функциялардың қасиеттерін еске түсіру, тригонометриялық формулаларға шолу жасау.



ІІІ. sinx=a. cosx=a. tqx=a. ctqx=a теңдеулерінің шешімдері.



ІҮ. Ауызша есептер. Теңдеулердің шешімін табындар.

А) sinx= 1/2 Ә) cosx=√3/2 Б) tqx=√3

В) Sin2x=1 Г) cos3x=1 Ғ) ctqx=√3

Д) tq3x=0 Е) sinx/2 =0 Ж) ctq4x=1



Ү. Класта оқулықтан есептер шығару.

№113 А) sin (- 6х)- sin(- 4х)=0

Sin 6x+ sin4x=0

Sin4x - sin6x=0

2 sin (- x) cos5x=0

- 2 sin cos5x=0

Sinx=0, Пn. ntz

cos5x=0. 5x= П/2 +ПK

x=П/10 +ПK/5. ktz

Жауабы: Пn; n/10+nk/5; n. kϵz



№115 а) 2sin2x - 3 sinx+1=0

Шешуі: Берілген теңдеу sinxфункциясына қатысты квадрат теңдеу болып табылады. Sinx=u деп белгілесек, теңдеу мына түрге келеді. 2u2 - 3u+1=0

Теңдеудің түбірлері u1=1; u2=1/2Cодан sinx=1 және sinx =1/2 түріндегі қарапайым теңдеуге келеміз.

sinx =1, х1 =П/2 +2Пn, nсz

sinx =1/2, x2=(- 1) hП/b +ПR, Rtz

Жауабы: П/2 +2Пn, (- 1) hП/6 +ПR, n, Rϵz

Трмонометриялық формулаларды түрлендіру жолымен шешілетін теңдеулер



№123 (а)

2cos^2 x+14 cosx=3sin^2 x,sin^2 x=1 -cos^2 x

2cos^2 x+14 cosx=3(1 - cos^2 x)

2cos^2 x+14 cosx=3+3cos^2 x

5cos^2 x+14 cosx - 3=0

cosx=t деп белгілеу енгіземіз

Сонда5t^2+14t - 3=0

Мұнда t_(1=) 1/5; t_(2=- 3)

cosx=- 3 шешімі болмайды.

сosx=1/5. x=t arccos 1/5+2Пh. ntz

Фунициялардың дәрежесін төмендету арқылы шешілетін трмонометриялық теңдеулер.



6 - мысал:

cos^2 x+cos^2 2x+cos^2 3x+cos^2 4x=2

cos^2 x/2=(1+cosx)/2 формуласын пайдаланамыз.

Сонда (1+cos2x)/2+(1+cos4x)/2+(1+cos6x)/2+(1+cos8x)/2=2

Осыдан (cos2x+cos8x)+(cos4x+cos6x)=0

2cos5x⋅cos3x+2cos5x cosx=0

2cos5x (cos3x+cosx)=0

Қосындыны көбейтіндіге түрлендіріп 2 cos5x cos2x cosx=0

Бұдан cos5x=0, cos2x=0, cosx=0 теңдеулері шығады.

cos5x=0, 5х=П/2+Пh; x= П/(10+) Пh/5, ntϵ

cos2x=0, 2х=П/2+Пh; x= П/(4+) Пh/2, ntz

cosx=0, х=П/2+Пh, ntz

Кейбір шешімдерді біріктіруге болады.



Жауабы: П/4+Пh/2; П/5 (1¦2+n), nϵz

ҮІ. Үйге тапсырма: §10 №113 (ә, в), 115 (б, в), 117 (а, б)

ҮІІ. Сабақты қорытындылау.


Краткое описание документа:


Тригонометриялық теңдеулерді шешу

Категориясы: Математика

Тригонометриялық теңдеулерді шешу жолдарын, әр түрлі әдістерін қарастыру. Теңдеулерді шешуге керекті формулаларды тиімді пайдалана білуге, тригонометриялық теңдеулер шешімін толық жаза білуге дағдыландыру. Білігі мен білім ін практикада қолдану дағдысын қалыптастыру

Сабақтың тақырыбы: Тригонометриялық теңдеулерді шешу.

Сабақтың мақсаты: Тригонометриялық теңдеулерді шешу жолдарын, әр түрлі әдістерін қарастыру.

Автор
Дата добавления 16.05.2015
Раздел Математика
Подраздел Конспекты
Просмотров263
Номер материала 285664
Получить свидетельство о публикации

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх