Инфоурок / Математика / Другие методич. материалы / Учебная карта урока "Применение производной к решению задач на нахождение наибольшего и наименьшего значения функции"
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Я люблю природу», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 15 ДЕКАБРЯ!

Конкурс "Я люблю природу"

Учебная карта урока "Применение производной к решению задач на нахождение наибольшего и наименьшего значения функции"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов

Этапы исследовательской деятельности

Из опыта учителя математики МБОУ КСОШ№3 Сажневой Елены Викторовны

«Нахождение наибольшего и наименьшего значения непрерывной функции на промежутке»


Учебная карта

Математика 10 класс



Этапы

Цель

Приёмы достижения цели

Мотивация

Целью мотивации, как этапа урока, является создание условий для возникновения у ученика вопроса или проблемы. Одним из способов осуществления мотивации может служить исходная (мотивирующая задача), которая должна обеспечить «видение» учащимися более общей проблемы, нежели та, которая отражена в условии задачи.




Учащимся предлагается мотивирующая задача из раздела «Реальная математика». Например: вам необходимо огородить участок прямоугольной формы, какие размеры необходимо выбрать для того, чтобы обеспечить минимальные затраты и получение максимальной площади

Формулирование проблемы

Самый тонкий и «творческий» компонент мыслительного процесса. В идеале сформулировать проблему должен сам ученик в результате решения мотивирующей задачи. Однако в реальной школьной практике такое случается далеко не всегда: для очень многих школьников самостоятельное определение проблемы затруднено; предлагаемые ими формулировки могут оказаться неправильными. А поэтому необходим контроль со стороны учителя.


Предлагается задача из курса математического анализа 10 класса:

Нужно огородить участок прямоугольной формы забором длиной 200м. Каковы должны быть размеры участка, чтобы его площадь была наибольшей?

Сбор, систематизация и анализ фактического материала

Провести достаточное число испытаний для получения необходимого фактического материала. Удобно осуществлять с помощью таблиц, схем, графиков и т.п. – они позволяют визуально определить необходимые связи, свойства, соотношения, закономерности.




Осуществляется при изучении соответствующей учебной или специальной литературы либо посредством проведения испытаний, всевозможных проб, измерения частей фигуры, каких-либо параметров и т.д. Пробы (испытания) не должны быть хаотичными, лишенными какой-либо логики. Необходимо задать их направление посредством пояснений, чертежей и т.п. В нашем случае учащимся предлагается нарисовать различные прямоугольники, периметр которых равен 200м, найти площади этих прямоугольников и занести данные в таблицу

длина

ширина

периметр

площадь

95м

200м

475м2

90м

10м

200м

900м2

85м

15м

200м

1275м2

80м

20м

200м

1600м2

75м

25м

200м

1875м2

70м

30м

200м

2100м2

65м

35м

200м

2275м2

60м

40м

200м

2400м2

55м

45м

200м

2475м2

50м

50м

200м

2500м2



Выдвижение гипотезы

Прививать учащимся стремление записывать гипотезы на математическом языке, что придает высказываниям точность и лаконичность. Не нужно ограничивать число предлагаемых учащимися гипотез.



Площадь участка будет наибольшей, если участок имеет форму квадрата

Проверка гипотезы

Укрепить веру или усомниться в истинности предложений, а может внести изменения в их формулировки

Чаще всего проверку гипотез целесообразно осуществлять посредством проведения еще одного испытания. При этом результат новой пробы сопоставляется с ранее полученным результатом. Если результаты совпадают, то гипотеза подтверждается, и вероятность ее истинности возрастает. Расхождение же результатов служит основанием для отклонения гипотезы или уточнения условий ее справедливости.



Доказательство гипотезы

Доказательство истинности гипотез получивших ранее подтверждение или ложность, которая может быть определена с помощью контрпримеров. Поиск необходимых доказательств часто представляет большую трудность, поэтому учителю важно предусмотреть всевозможные подсказки.


Для доказательства истинности гипотезы составляем математическую модель: выделим оптимизируемую величину: в нашей задаче это площадь участка. Обозначим её S. Площадь зависит от измерений прямоугольника, объявим независимой переменной длину прямоугольникаи обозначим её х, ясно, что х>0. Так Р=200м, 0<х<100. Тогда ширина участка (100-х)м. Исходя из условия задачи выразим S через х. S(x)= x(100-x), xє(0;100).

Работа с составленной моделью.

На этом этапе надо найти наибольшее значение для функции S(x)= x(100-x)= 100х-х2, при xє(0;100). Так как, данная функция непрерывна на промежутке (0;100) и имеет внутри него единственную стационарную точку, то можно использовать следующую теорему: Пусть функция y=f(x) непрерывна на промежутке Х и имеет внутри него единственную стационарную точку х=х0. Тогда: а)если х=х0 – точка максимума, то унаибольшее=f0)

а)если х=х0 – точка минимума, то унаименьшее=f(x0).

В нашем случае х0=50, и х0- точка максимума, значит унаибольшее=f(50).

Мы выяснили, что размеры участка должны быть 50х50м, что подтверждает нашу гипотезу: площадь участка будет наибольшей, если он имеет квадратную форму.







Общая информация

Номер материала: ДВ-234502

Похожие материалы