Инфоурок Физика КонспектыУчебно методическая карта урока по практическому занятию по физике "Уравнение состояние идеального газа" для колледжа

Учебно методическая карта урока по практическому занятию по физике "Уравнение состояние идеального газа" для колледжа

Скачать материал

                                                                                                    Практическая работа №6

Тема:Уравнение состояния идеального газа

Цель работы :закрепить навыки решения задач на уравнение состояния идеального газа.

Теория:Основные положения МКТ

Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химического вещества. В основе молекулярно-кинетической теории лежат три основных положения:

·         Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными и состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы (соответственно, анионы и катионы).

·         Атомы и молекулы находятся в непрерывном хаотическом движении и взаимодействии, скорость которого зависит от температуры, а характер – от агрегатного состояния вещества.

·         Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Атом – наименьшая химически неделимая частица элемента (атом железа, гелия, кислорода). Молекула – наименьшая частица вещества, сохраняющая его химические свойства. Молекула состоит из одного и более атомов (вода – Н2О – 1 атом кислорода и 2 атома водорода). Ион – атом или молекула, у которых один или несколько электронов лишние (или электронов не хватает).

Молекулы имеют чрезвычайно малые размеры. Простые одноатомные молекулы имеют размер порядка 10–10 м. Сложные многоатомные молекулы могут иметь размеры в сотни и тысячи раз больше. 

Беспорядочное хаотическое движение молекул называется тепловым движением. Кинетическая энергия теплового движения растет с возрастанием температуры. При низких температурах молекулы конденсируются в жидкое или твердое вещество. При повышении температуры средняя кинетическая энергия молекулы становится больше, молекулы разлетаются, и образуется газообразное вещество.

В твердых телах молекулы совершают беспорядочные колебания около фиксированных центров (положений равновесия). Эти центры могут быть расположены в пространстве нерегулярным образом (аморфные тела) или образовывать упорядоченные объемные структуры (кристаллические тела).

В жидкостях молекулы имеют значительно большую свободу для теплового движения. Они не привязаны к определенным центрам и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей.

В газах расстояния между молекулами обычно значительно больше их размеров. Силы взаимодействия между молекулами на таких больших расстояниях малы, и каждая молекула движется вдоль прямой линии до очередного столкновения с другой молекулой или со стенкой сосуда. Среднее расстояние между молекулами воздуха при нормальных условиях порядка 10–8 м, то есть в сотни раз превышает размер молекул. Слабое взаимодействие между молекулами объясняет способность газов расширяться и заполнять весь объем сосуда. В пределе, когда взаимодействие стремится к нулю, мы приходим к представлению об идеальном газе.

Идеальный газ – это газ, молекулы которого не взаимодействуют друг с другом, за исключением процессов упругого столкновения и считаются материальными точками.

В молекулярно-кинетической теории количество вещества принято считать пропорциональным числу частиц. Единица количества вещества называется молем (моль). Моль – это количество вещества, содержащее столько же частиц (молекул), сколько содержится атомов в 0,012 кг углерода 12C. Молекула углерода состоит из одного атома. Таким образом, в одном моле любого вещества содержится одно и то же число частиц (молекул). Это число называется постоянной Авогадро: NА = 6,022·1023 моль–1.

Постоянная Авогадро – одна из важнейших постоянных в молекулярно-кинетической теории. Количество вещества определяется как отношение числа N частиц (молекул) вещества к постоянной Авогадро NА, или как отношение массы к молярной массе:

Формула Химическое количество вещества

Массу одного моля вещества принято называть молярной массой M. Молярная масса равна произведению массы m0 одной молекулы данного вещества на постоянную Авогадро (то есть на количество частиц в одном моле). Молярная масса выражается в килограммах на моль (кг/моль). Для веществ, молекулы которых состоят из одного атома, часто используется термин атомная масса. В таблице Менделеева молярная масса указана в граммах на моль. Таким образом имеем еще одну формулу:

Формула Масса одной молекулы вещества

где: M – молярная масса, NA – число Авогадро, m0 – масса одной частицы вещества, N – число частиц вещества содержащихся в массе вещества m. Кроме этого понадобится понятие концентрации (количество частиц в единице объема):

Формула Определение концентрации

Напомним также, что плотность, объем и масса тела связаны следующей формулой:

Формула Связь массы, плотности и объёма

Если в задаче идет речь о смеси веществ, то говорят о средней молярной массе и средней плотности вещества. Как и при вычислении средней скорости неравномерного движения, эти величины определяются полными массами смеси:

Средняя плотность вещества

Средняя молярная масса вещества

Не забывайте, что полное количество вещества всегда равно сумме количеств веществ, входящих в смесь, а с объемом надо быть аккуратными. Объем смеси газов не равен сумме объемов газов, входящих в смесь. Так, в 1 кубометре воздуха содержится 1 кубометр кислорода, 1 кубометр азота, 1 кубометр углекислого газа и т.д. Для твердых тел и жидкостей (если иное не указано в условии) можно считать, что объем смеси равен сумме объемов ее частей.

 Основное уравнение МКТ идеального газа

При своем движении молекулы газа непрерывно сталкиваются друг с другом. Из-за этого характеристики их движения меняются, поэтому, говоря об импульсах, скоростях, кинетических энергиях молекул, всегда имеют в виду средние значения этих величин.

Число столкновений молекул газа в нормальных условиях с другими молекулами измеряется миллионами раз в секунду. Если пренебречь размерами и взаимодействием молекул (как в модели идеального газа), то можно считать, что между последовательными столкновениями молекулы движутся равномерно и прямолинейно. Естественно, подлетая к стенке сосуда, в котором расположен газ, молекула испытывает столкновение и со стенкой. Все столкновения молекул друг с другом и со стенками сосуда считаются абсолютно упругими столкновениями шариков. При столкновении со стенкой импульс молекулы изменяется, значит на молекулу со стороны стенки действует сила (вспомните второй закон Ньютона). Но по третьему закону Ньютона с точно такой же силой, направленной в противоположную сторону, молекула действует на стенку, оказывая на нее давление. Совокупность всех ударов всех молекул о стенку сосуда и приводит к возникновению давления газа. Давление газа – это результат столкновений молекул со стенками сосуда. Если нет стенки или любого другого препятствия для молекул, то само понятие давления теряет смысл. Например, совершенно антинаучно говорить о давлении в центре комнаты, ведь там молекулы не давят на стенку. Почему же тогда, поместив туда барометр, мы с удивлением обнаружим, что он показывает какое-то давление? Правильно! Потому, что сам по себе барометр является той самой стенкой, на которую и давят молекулы.

Поскольку давление есть следствие ударов молекул о стенку сосуда, очевидно, что его величина должна зависеть от характеристик отдельно взятых молекул (от средних характеристик, конечно, Вы ведь помните про то, что скорости всех молекул различны). Эта зависимость выражается основным уравнением молекулярно-кинетической теории идеального газа:

Формула Основное уравнение молекулярно-кинетической теории идеального газа

где: p - давление газа, n - концентрация его молекул, m0 - масса одной молекулы, vкв - средняя квадратичная скорость (обратите внимание, что в самом уравнении стоит квадрат средней квадратичной скорости). Физический смысл этого уравнения состоит в том, что оно устанавливает связь между характеристиками всего газа целиком (давлением) и параметрами движения отдельных молекул, то есть связь между макро- и микромиром.

Следствия из основного уравнения МКТ

Как уже было отмечено в предыдущем параграфе, скорость теплового движения молекул определяется температурой вещества. Для идеального газа эта зависимость выражается простыми формулами для средней квадратичной скорости движения молекул газа:

Формула Средняя квадратичная скорость молекул

где: k = 1,38∙10–23 Дж/К – постоянная Больцмана, T – абсолютная температура. Сразу же оговоримся, что далее во всех задачах Вы должны, не задумываясь, переводить температуру в кельвины из градусов Цельсия (кроме задач на уравнение теплового баланса). Закон трех постоянных:

Формула Связь постоянной Больцмана, постоянной Авогадро и универсальной газовой постоянной

где: R = 8,31 Дж/(моль∙К) – универсальная газовая постоянная. Следующей важной формулой является формула для средней кинетической энергии поступательного движения молекул газа:

Формула Средняя кинетическая энергия поступательного движения одной молекулы

Оказывается, что средняя кинетическая энергия поступательного движения молекул зависит только от температуры, одинакова при данной температуре для всех молекул. Ну и наконец, самыми главными и часто применяемыми следствиями из основного уравнения МКТ являются следующие формулы:

Формула Следствия из основного уравнения МКТ

Измерение температуры

Понятие температуры тесно связано с понятием теплового равновесия. Тела, находящиеся в контакте друг с другом, могут обмениваться энергией. Энергия, передаваемая одним телом другому при тепловом контакте, называется количеством теплоты.

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными. Температура – это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии.

Для измерения температуры используются физические приборы – термометры, в которых о величине температуры судят по изменению какого-либо физического параметра. Для создания термометра необходимо выбрать термометрическое вещество (например, ртуть, спирт) и термометрическую величину, характеризующую свойство вещества (например, длина ртутного или спиртового столбика). В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании).

Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются заданными. Чаще всего используют простые природные системы, в которых температура остается неизменной, несмотря на теплообмен с окружающей средой – это смесь льда и воды и смесь воды и пара при кипении при нормальном атмосферном давлении. По температурной шкале Цельсия точке плавления льда приписывается температура 0°С, а точке кипения воды: 100°С. Изменение длины столба жидкости в капиллярах термометра на одну сотую длины между отметками 0°С и 100°С принимается равным 1°С.

Английский физик У.Кельвин (Томсон) в 1848 году предложил использовать точку нулевого давления газа для построения новой температурной шкалы (шкала Кельвина). В этой шкале единица измерения температуры такая же, как и в шкале Цельсия, но нулевая точка сдвинута:

Перевод температуры из шкалы Цельсия в шкалу Кельвина

При этом изменение температуры на 1ºС соответствует изменению температуры на 1 К. Изменения температуры по шкале Цельсия и Кельвина равны. В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой К. Например, комнатная температура TС = 20°С по шкале Кельвина равна TК = 293 К. Температурная шкала Кельвина называется абсолютной шкалой температур. Она оказывается наиболее удобной при построении физических теорий.

 Уравнение состояния идеального газа или уравнение Клапейрона-Менделеева

Уравнение состояние идеального газа является очередным следствие из основного уравнения МКТ и записывается в виде:

Формула Уравнение состояния идеального газа Уравнение Клапейрона-Менделеева

Данное уравнение устанавливает связь между основными параметрами состояния идеального газа: давлением, объемом, количеством вещества и температурой. Очень важно, что эти параметры взаимосвязаны, изменение любого из них неизбежно приведет к изменению еще хотя бы одного. Именно поэтому данное уравнение и называют уравнением состояния идеального газа. Оно было открыто сначала для одного моля газа Клапейроном, а впоследствии обобщено на случай большего количество молей Менделеевым.

Если температура газа равна Tн = 273 К (0°С), а давление pн = 1 атм = 1·105 Па, то говорят, что газ находится при нормальных условиях.

 Десятичные приставки

Множитель

Приставка

Множитель

Приставка

Наименование

Обозначение

Наименование

Обозначение

1018

1015

1012

109

106

103

102

101

эксо

пета

тера

гига

мега

кило

гекто

дека

Э

П

Т

Г

М

К

г

да

10–1

10–2

10–3

10–6

10–9

10–12

10–15

10–18

деци

санти

мили

микро

нано

пико

фемто

атто

Д

с

м

мк

н

п

ф

а

 

1. Газ, находящийся в баллоне под давлением р1 = 2,0 кПа, охладили от температуры Т1 = 300 К до Т2 = 270 К. Какое будет давление р2 после охлаждения?

2. При сжатии газа его объем уменьшился с 8 до 5 л, а давление повысилось на 60 кПа. Найдите первоначальное давление p.

3. Баллон, наполненный газом под давлением p = 2,84 МПа, находится на складе при температуре t = 7 °C. После того, как половина газа была израсходована, баллон внесли в помещение. Какова температура Tв помещении, если давление газа в баллоне через некоторое время стало равным р1 = 1,52 МПа?

4. Найдите плотность кислорода ρпри температуре t = 27 °С и давлении р = 160 кПа.

5. Два баллона наполнили газом (емкость их соответственно 2·10–2 м3 и 3·10–2 м3) и соединили. Каково будет общее давление p в системе, если давление в первом сосуде было p1= 105 Па, а во втором p2 = 4·105 Па? Считать, что температура в баллонах одинаковая до и после соединения.

6. При увеличении давления в 1,5 раза объем газа уменьшился на 30 мл. Найдите первоначальный объем V1. 

7. Какова была первоначальная температура воздуха T1, если при нагревании его на 3 К объем увеличился на 1 % от первоначального?

8. Какое количество вещества nсодержится в газе, если при давлении p = 200 кПа и температуре T = 240 К его объем равен V= 40 л?

9. Воздух объемом V = 1,45 м3, находящийся при температуре t = 20 °С и давлении p = 100 кПа, перевели в жидкое состояние. Какой объем V2 займет жидкий воздух, если его плотность ρ = 861 кг/м3?

10. В сосуде объемом V = 2,0 м3 находится кислород при температуре t = 47 °C и под давлением p = 2,5·106 Па. Определите массу кислорода m. 

11. На какой глубине h объем пузырька воздуха, поднимающегося со дна водоема, в 2 раза меньше, чем у поверхности? Атмосферное давление р0 = 100 кПа.

12. Какова плотность ρвоздуха (М = 29·10–3 кг/моль) в камере сгорания дизельного двигателя при температуре t = 503 °С, если давление воздуха p = 400 кПа?

13. При уменьшении объема газа в два раза давление увеличилось на 120 кПа и абсолютная температура возросла на 10 % . Каким было первоначальное давление р?

14. Определите значение температуры T по шкале Кельвина, если по шкале Цельсия она равна t = –3 °С.

15. Когда газ, объем которого оставался неизменным, нагрели на ΔT = 30 К, его давление увеличилось на Δp = 10%. Какова начальная температура газа Т1? 

16. Два сосуда, в которых содержится один и тот же газ одинаковой массы, соединены трубкой с краном. В первом сосуде давление p1 = 4,0 кПа, а во втором — р2= 6,0кПа. Какое давление p установится после открытия крана, если температура газа постоянна?

17. В комнате площадью S = 20 м3 и высотой h = 20,5 м температура воздуха повысилась с Т1 = 288 К до Т2 = 298 К. Давление постоянно, p = 100 кПа. На сколько уменьшилась масса воздуха Δm в комнате?

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Учебно методическая карта урока по практическому занятию по физике "Уравнение состояние идеального газа" для колледжа"

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Патентовед

Получите профессию

Интернет-маркетолог

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Краткое описание документа:

Данный материал представлен для медицинских колледжей,где физика не является профилирующим предметом или для 10 классов в общеобразовательных учреждениях.

Учебно методическая карта рассчитана для закрепления знаний по теме "Уравнение состояния идеального газа", подобраны задачи для учеников с различной мотивацией ,с образцом решение задач.

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 662 160 материалов в базе

Материал подходит для УМК

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 09.01.2018 1090
    • DOCX 54.9 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Ханина Айнура Абдрахмановна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Ханина Айнура Абдрахмановна
    Ханина Айнура Абдрахмановна
    • На сайте: 7 лет и 7 месяцев
    • Подписчики: 1
    • Всего просмотров: 51423
    • Всего материалов: 20

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Копирайтер

Копирайтер

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Актуальные вопросы преподавания физики в школе в условиях реализации ФГОС

72 ч.

2200 руб. 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 208 человек из 62 регионов
  • Этот курс уже прошли 1 003 человека

Курс профессиональной переподготовки

Физика: теория и методика преподавания в образовательной организации

Учитель физики

300/600 ч.

от 7900 руб. от 3650 руб.
Подать заявку О курсе
  • Сейчас обучается 539 человек из 70 регионов
  • Этот курс уже прошли 2 132 человека

Курс профессиональной переподготовки

Педагогическая деятельность по проектированию и реализации образовательного процесса в общеобразовательных организациях (предмет "Физика")

Учитель физики

300 ч. — 1200 ч.

от 7900 руб. от 3650 руб.
Подать заявку О курсе
  • Сейчас обучается 35 человек из 22 регионов
  • Этот курс уже прошли 39 человек

Мини-курс

Оказание первой помощи

4 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 682 человека из 73 регионов
  • Этот курс уже прошли 1 361 человек

Мини-курс

Анализ межпредметных связей: связь педагогики с научными дисциплинами

10 ч.

1180 руб. 590 руб.
Подать заявку О курсе

Мини-курс

Мозг и психотерапия: влияние, методы и направления

4 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 61 человек из 29 регионов
  • Этот курс уже прошли 27 человек