Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Доп. образование / Другие методич. материалы / Учебно-справочное пособие "Виды трансформаторов и их устройство"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Доп. образование

Учебно-справочное пособие "Виды трансформаторов и их устройство"

библиотека
материалов



hello_html_722b9c43.jpg







Учебно-справочное пособие

Трансформатор














Разработал: Александров А.Б.

Мастер п/о


















2015 г.




Оглавление

























1.Введение


Настоящее пособие необходимо в качестве дополнительного учебное материала обучающимся на курсах подготовки по профессии «Электромонтер по ремонту и обслуживанию электрооборудования», а также для студентов СПО. Учебное пособие освещает вопросы устройства. По мере разработки новых документов по нижеперечисленной теме, возможно внесение в данное учебное пособие изменений и дополнений в установленном порядке.

2.Термины и определения


В настоящем документе применены следующиетермины с соответствующими определениями:

силовой трансформатор: Статическое устройство, имеющее две или более обмотки, предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного напряжения и тока в одну или несколько других систем переменного напряжения и тока, имеющих обычно другие значения при той же частоте, с целью передачи мощности (МЭС 421-01-01).

автотрансформатор: Трансформатор, в котором две или большее число обмоток имеют общую часть (МЭС 421-01-11).

масляный трансформатор: Трансформатор, магнитная система и обмотки которого погружены в масло (МЭС 421-01-14).

сухой трансформатор: Трансформатор, магнитная система и обмотки которого не погружены в изолирующую жидкость (МЭС 421-01-16).

вывод: Токоведущая часть, предназначенная для присоединения обмотки к внешним проводникам.

линейный вывод: Вывод, предназначенный для присоединения трансформатора к линейным проводникам внешней сети (МЭС 421-02-01).

обмотка: Совокупность витков, образующих электрическую цепь с целью получения одного из напряжений трансформатора.

соединение по схеме «звезда» (У-соединение): Соединение обмоток, при котором один конец обмотки каждой фазы трехфазного трансформатора или каждой обмотки с одним и тем же номинальным напряжением группы однофазных трансформаторов, образующих трехфазную группу, соединен с общей точкой (нейтралью), а другой ее конец присоединен к соответствующему линейному выводу (МЭС 421-10-01).

соединение по схеме «треугольник» (Д-соединение): Последовательное соединение обмоток фазы трехфазного трансформатора или обмоток с одним и тем же номинальным напряжением группы однофазных трансформаторов, образующих трехфазную группу, выполненное так, что оно образует замкнутую цепь (МЭС 421-10-02).

Трансформатор (от лат. transformo - преобразую) - статическое (не имеющее подвижных частей) устройство по преобразованию переменного тока одного напряжения в переменный ток другого напряжения при неизменной частоте без кардинальных потерь мощности, основанное на принципе электромагнитной индукции.

Трансформатор заключается из одной (автотрансформатор) или нескольких изолированных проволочных обмоток, охватываемых всеобщим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитногомагнито-мягкого материала. Схематическое устройство простейшего трансформатора показано на рисунке .

hello_html_5a988b8f.jpg


Схематическое устройство трансформатора,

где 1 - первичная обмотка, 2 – вторичная


Трансформатор называется силовым, если используется для преобразования электрической энергии в электрических сетях или для непосредственного питания приемников энергии. Различают силовые трансформаторы общего назначения, служащие для питания сетей или приемников электрической энергии, не отличающихся особыми условиями работы, характером нагрузки или режимом работы, и трансформаторы специального назначения, служащие для питания сетей или приемников энергии, отличающихся особыми условиями работы, характером нагрузки или режимом работы.

Трансформаторы общего назначения выполняют в энергосистемах три основные функции– преобразование напряжения (трансформация);

связь между отдельными элементами и участками схемы электрической сети, в частности, отличающимися по напряжению и фазе;

регулирование напряжения и потоков мощности.

Силовые трансформаторы различают:

  • по способу охлаждающей среды — масляные и сухие;

  • по числу обмоток — двухобмоточные и трехобмоточные;

  • по назначению – повышающие и понижающие;

  • по количеству фаз — однофазные и трехфазные.

Силовые трансформаторы характеризуются номинальными величинами, а также током и потерями холостого хода, напряжением, потерями и режимом короткого замыкания.Если обеспечение пожарной безопасности установки является решающим обстоятельством (пожароопасные производственные цехи, лаборатории, общественные здания), часто применяют сухие (безмасляные) трансформаторы.

По числу гальванически не связанных между собой обмоток различают трансформаторы двухобмоточные, трехобмоточные и многообмоточные (большее, чем три, число обмоток практически используется только в специальных трансформаторах). При этом в зависимости от соотношения напряжения обмотки определяются, как обмотки высшего напряжения (ВН), низшего (НН) и среднего (СН). Обмоток в общем случае может быть и более двух.

Группы соединений обмоток трансформаторов определяются и характеризуются взаимным угловым смещением линейных векторов ЭДС в обмотках ВН, СН и НН. Смещение этих векторов определяется схемой соединения обмоток в звезду или треугольник и направлением их намотки. Соединяя обмотки ВН, СН и НН по этим схемам и изменяя направления их намотки, получают различные группы соединения обмоток трансформаторов. При различных соединениях обмоток в звезду и треугольник можно получить 12 различных углов сдвига фаз линейных ЭДС от 0 до 330° через каждые 30°, т.е. получить 12 различных групп. Для определения угла сдвига фаз удобно пользоваться часовым обозначением — стандартным. Часовое обозначение векторов ЭДС заключается в следующем: вектор линейной ЭДС обмотки ВН изображается на часовом циферблате минутной стрелкой и всегда устанавливается на 0 (12) ч, а вектор линейной ЭДС обмотки СН (трехобмоточного трансформатора) или НН изображается часовой стрелкой и указывает группу в часовом обозначении.

hello_html_m13925581.png

Группы соединений обмоток трансформаторов

3.Условия включения силовых трансформаторов в параллельную работу


В большинстве случаев в электрической установке целесообразно иметь не один, а несколько трансформаторов меньшей мощности, включенных параллельно на общую нагрузку. Такое дробление общей трансформаторной мощности позволяет:лучше решить проблему резервирования энергоснабжения потребителей;отключить часть трансформаторов при уменьшении нагрузки

hello_html_3487c18c.png

Схема включения трансформаторов припараллельной работе (а) и схема замещения их (б)


Согласно ПТЭЭП в главе 2.1 «Силовые трансформаторы и реакторы» указаны следующие условия параллельной работы трансформаторов.

Параллельная работа трансформаторов разрешается при следующих условиях:

группы соединений обмоток одинаковы;

соотношение мощностей трансформаторов не более 1:3;

коэффициенты трансформации отличаются не более чем на 0,5%;

напряжения короткого замыкания отличаются не более чем на 10%;

произведена фазировка трансформаторов.

4.Устройство и элементы конструкции силовых трансформаторов

Силовые трансформаторы (автотрансформаторы) в зависимости от мощности инапряжения условно делят на восемь габаритов. Так, например, к нулевому габариту относят трансформаторы мощностью до 5 кВ-А включительно, мощностью свыше 5 кВ-А — до 100 кВ-А напряжением до 35 кВ (включительно) к I габариту, выше 100 до 1000 — ко II, выше 1000 до 6300 — к III; выше 6300 — к IV, а напряжением выше 35 до 110 кВ (включительно) и мощностью до 32 000 кВ-А — к V габариту. Для отличия по конструктивным признакам, назначению, мощности и напряжению их подразделяют на типы.
Каждому типу трансформаторов присваивают обозначение, состоящее из букв и цифр. Буквы в типах масляных и сухих трансформаторов обозначают: О — однофазный, Т — трехфазный, Н — регулирование напряжения под нагрузкой, Р — с расщепленными обмотками; по видам охлаждения: С — естественно-воздушное, М — естественная циркуляция воздуха   и   масла, Д — принудительная циркуляция воздуха и естественная циркуляция масла, ДЦ — принудительная циркуляция воздуха и масла, MB — принудительная циркуляция воды и естественная циркуляция масла, Ц— принудительная циркуляция воды и масла. Вторичное употребление буква С в обозначении типа показывает, что трансформатортрехобмоточный
hello_html_m6a3e756d.pngРис. 1. Устройство силового масляного трансформатора мощностью 1000—6300 кВ-А класса напряжения 35 кВ:
1 — бак, 2 — вентиль, 3 — болт заземления, 4 — термосифонный фильтр, 5 — радиатор, 6 — переключатель, 7 — расширитель, 8 — маслоуказатель, 9—воздухоосушитель, 10 — выхлопная труба, 11 — газовое реле, 12 — ввод ВН, 13 — привод переключающего устройства, 14 — ввод НН, 15 — подъемный рым, 16 — отвод НН, 17 — остов, 18 — отвод ВН, 19 — ярмовая балка остова (верхняя и нижняя), 20 — регулировочные ответвления  обмоток ВН,   21 — обмотка  ВН   (внутри  НН),   22 — каток тележки

Цифры в числителе указывают мощность трансформатора (в киловольт-амперах), в знаменателе — класс напряжения обмотки ВН (в киловольтах), например: ТМ-100/6 — трехфазный, с масляным охлаждением и естественной циркуляцией, мощностью 100кВ-А, напряжением 6 кВ; ТД-10000/110 — трехфазный, с дутьевым охлаждением, мощностью 10 000 кВ-А, напряжением 110 кВ; ТДТ-20 000/110 — трехфазный, трехобмоточный, с дутьевым охлаждением, мощностью 20 000 кВ-А, напряжением 110 кВ; ТС-630/10 — трехфазный, сухого исполнения, мощностью 630 кВ-А, напряжением10кВ.В обозначении автотрансформатора добавляют букву А. Если автотрансформатор понижающий, то буква А стоит в начале обозначения, если повышающий—вконце.В условном обозначении типа трансформатора указывают также год разработку конструкции, климатическое исполнение и категорию размещения, например: ТДЦ-63 000/110-75У1 (У — предназначен для работы в условиях умеренного климата, 1 — на открытомвоздухе).По стандарту номинальные мощности трехфазных трансформаторов и автотрансформаторов должны соответствовать ряду: 5; 6,3; 8; 10; 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80; 100; 125; 160;00;250ит.д.Составными частями масляного трансформатора являются: остов обмотки, переключающее устройство, вводы, отводы, изоляция, бак, охладители, защитныеиконтрольно-измерительныеивспомогательныеустройства.Конструкция, включающая в собранном виде остов трансформатора, обмотки с их изоляцией, отводы, части регулирующего устройства, а также все детали, служащие для их механического соединения, называется активной частью трансформатора. На рис. 1 показано устройство и компоновка основных частей силового масляного трансформатора мощностью 1000— 6300 кВ-А.

5.Основные узлы силового трансформатора

К основным узлам трансформатора относятся: магнитопровод (остов) с магнитной цепью из активной стали со всеми креплениями и деталями; обмотки с изоляцией, отводами и креплениями; переключатель ответвлений; бак с арматурой и элементами охлаждения; вводы; защитные и контрольно-измерительные устройстваhello_html_m303c157e.jpg

1 — бак; 2 — радиатор; 3 — расширитель; 4 — маслоуказатель; 5 — ввод ВН; 6 — привод переключающего устройства; 7 — ввод НН.Рисунок 1 - Внешний вид силового трансформатора.

Магнитопровод

В трехфазных трансформаторах I—II габаритов наибольшее распространение получили несимметричные магнитопроводытрехстержневого шихтованного типа. Магнитопровод собран из отдельных тонких пластин электротехнической стали, изолированных друг от друга пленкой специального жаростойкого покрытия или лака КФ-965. Шихтовка — сборка пластин в переплет (рисунок 2), получается при чередовании слоев: пластины стержней переходят в ярма, а пластины ярм — в стержни. Поперечное сечение стержней — многоступенчатое, приближающееся по форме к кругу для лучшего использования пространства внутри обмоток (рисунок 3). Сечение ярм может применяться разное: многоступенчатое (повторяющее форму стержней), прямоугольное (рисунок 4,а), Т-образное (рисунок 4,б) и крестообразное (рисунок 4,в).hello_html_m4ca34389.jpg

Рисунок 2 - Сборка пластин Рисунок 3 - Форма поперечного

магнитопровода в переплетD0 — сечения стержней магнитопровода

диаметр описанной окружности стержня


hello_html_m362e8ed.jpg

Рисунок 4 - Поперечные сечения ярм магнитопроводов


Пластины ярм как верхнего, так и нижнего скрепляют ярмовыми балками, стянутыми тремя горизонтальными прессующими шпильками. Шпильки изолируют от стали ярма бумажно-бакелитовыми трубками и изоляционными шайбами. Активную сталь магнитопровода заземляют луженой медной лентой 2 (рисунок 5), вставленной одним концом между пластинами первого пакета, а другим — между электрокартонной прокладкой и ярмовой балкой стороны низшего напряжения (НН).


Рисунок 5 - Установка заземления магнитопровода


6.Обмотки трансформаторовhello_html_m6e0ce708.jpg


Трансформаторы I—II габаритов имеют в основном цилиндрические двух- и многослойные обмотки (рисунок 6). Обмотки НН наматывают проводом прямоугольного сечения, а ВН — круглого. Сечение витка обмотки НН значительно больше, чем ВН, так как число витков у обмотки НН меньше, а ток в ней больше (отношение токов в обмотках НН и ВН связано с отношением их напряжений и взависимости от схемы и группы соединений обмоток входит в определение коэффициента трансформации). Виток обмотки НН с низким номинальным напряжением (230 В), изображенной на рисунке 6, состоит из двух параллельных проводов. Провода изолируют бумажной изоляцией, котораядостаточна для изоляции между витками. Соседние слои изолируют дополнительно кабельной бумагой. Число слоев зависит от мощности трансформатора. Начиная с мощности 100 кВА все слои каждой обмотки разделяют на две части охлаждающим каналом, образуемым деревянными или электрокартонными рейками. hello_html_m1ed9630.png

а — обмотка НН — двухслойная с двумя параллельными проводами; б — обмотка ВН — многослойная

Рисунок 6 - Обмотки трансформаторов I—II габаритов


Трансформаторные заводы изготовляют обмотки НН и ВН раздельно. Каждую обмотку наматывают на бумажно-бакелитовый цилиндр толщиной 1,5—2,5 мм, а затем в обмотку ВН с натягом впрессовывают обмотку НН (вместе с рейками, образующими канал между обмотками). Раньше собранные и проверенные обмотки пропитывали глифталевым лаком, а затем запекали в печах при атмосферном давлении и температуре 80—90° С. Обмотки становились жесткими, монолитными, что, как предполагалось, должно было предохранить их от механических повреждений. Однако специальными испытаниями было доказано, что механическая прочность обмоток благодаря пропитке повышается незначительно, но это создает некоторое удобство при сборке. Но динамическую устойчивость обмоток при коротких замыканиях в трансформаторе пропитка не повышает. Более действенными мерами, которые сейчас применяют как трансформаторные, так и электроремонтные заводы, являются: введение магнитосимметричных схем обмоток; пофазная намотка, при которой непосредственно на обмотку НН, не снимая ее со станка, наматывают обмотку ВН, и др. Следует также учитывать, что трансформаторное масло с применяемыми сейчас присадками с течением времени растворяет глифталевый лак, который уходит в шлам. Была изготовлена опытная партия трансформаторов с непропитанными обмотками, она успешно прошла серию специальных испытаний. И сейчас обмотки трансформаторов I—II габаритов не пропитывают. Некоторые трансформаторы старых серий имели обмотки других типов: винтовые (ТСМАН), непрерывные (типа ТМ-560/10). Внутренняя изоляция трансформатора состоит из главной изоляции обмоток, продольной изоляции обмоток, изоляции отводов и переключателя ответвлений относительно бака и других заземленных частей. Главная изоляция обмоток изолирует обмотки друг от друга и от заземленных частейрисунок 7)..hello_html_2a3b887c.jpg

а — схема изоляции обмоток фазы А; б — размещение деталей главной изоляции обмоток в трансформаторе. Рисунок 7 - Главная изоляция обмоток


Ярмовая изоляция изолирует обмотки от ярма и располагается вверху и внизу между торцовой частью обмотки и уравнительной изоляцией. Последняя выравнивает плоскость ярмовых балок с горизонтальной плоскостью ярма. Конструкции ярмовой и уравнительной изоляции у трансформаторов I—II габаритов самые различные. На рисунке 8 изображена ярмовая изоляция, представляющая собой кольцеобразную шайбу из электрокартона толщиной 2—3 мм с прикрепленными по обеим сторонам подкладками. Уравнительную изоляцию изготовляют в виде настила из деревянных планок. Иногда этот настил служит одновременно и ярмовой и уравнительной изоляцией, а между обмоткой и ярмомустанавливаютэлектрокартонные щитки.hello_html_3a82fc30.jpgРисунок 8 - Ярмовая изоляция


Продольная изоляция обмотки включает в себя витковую изоляцию и изоляцию между слоями обмотки. Изоляцией отводов и переключателя ответвлений относительно бака и других заземленных частей у трансформаторов I—II габаритов является только масляный промежуток, его величина зависит от напряжения и от формы заземленной и токоведущей частей: при заостренной форме масляный промежуток больше, а при плоской меньше. У трансформаторов 10 кВ обмотка ВН отстоит от стенки бака не менее чем на 25 мм; отвод с твердой изоляцией толщиной 2 мм на сторону — не менее чем на 10 мм. Отводы — это провода, соединяющие концы обмоток между собой, с вводами и с переключателем ответвлений. Отводы НН выполняют из алюминиевых шин. При напряжении до 525 В их не изолируют. Сечение отводов выбирают из расчета плотности тока не более 4,8 А/мм2. Отводы ВН выполняют из медных прутков или гибкого медного кабеля. Прутки диаметром до 5,2 мм изолируют кабельной бумагой, при большем диаметре на них насаживают бумажно-бакелитовые трубки. Для изолированных медных отводов допускаемая плотность тока составляет 2,5 А/мм2.

7.Переключатель ответвлений трансформатора


Все трансформаторы для распределительных сетей имеют устройства переключения ответвлений обмоток: либо под нагрузкой (устройства РПН), либо без возбуждения (устройства ПБВ). Устройства РПН для трансформаторов I—II габаритов практически не применяются. Устройства ПБВ применяются на стороне ВН для регулирования напряжения в диапазоне ±5% номинального значения. Устройство состоит из переключателя ответвлений, расположенного внутри трансформатора, на ярмовой балке магнитопровода или под крышкой бака, и ручного привода, выведенного наружу, на крышку бака. Переключатели ответвлений выполняют на три или на пять ступеней регулирования: «номинал» и два крайних положения или «номинал» и ±2X2,5%. На трансформаторах, выпущенных в разное время разными заводами, могут встретиться самые различные переключатели ответвлений. Это как «нулевые» так и строенные трехфазные системы. На рисунках 9—11 показаны наиболее распространенные переключатели трансформаторов I—II габаритов: ламельный «нулевой», сегментный

«нулевой» и реечный строенный.

hello_html_1d2248e9.png1, 9, 18, 26 — шайбы; 2 — винт; 3 — втулка; 4 — сальниковая набивка; 5 — гайка сальника; 6 — гайка фланца; 7 — болт; 8 — колпак; 10 — фланец; 11 и 12 — прокладки; 13, 21 — колпаки; 14 — корпус переключателя; 15 — неподвижный контакт; 16 — пружинная шайба; 17 — гайка; 19 — звезда; 20 - пружина; 22 — диск; 23 — контргайка; 24 — шплинт; 25 — вал














Рисунок 9 - Высоковольтный переключатель ответвлений


hello_html_2ccfbd13.jpg
а — внешний вид; б — схема контактов; 1 — неподвижные контакты; 2 — цилиндр; 3 — коленчатый вал; 4 — подвижные контакты; 5 — приводной вал; 6 — фланец; 7 — колпак; 8 — стопорный болт; 9 — стрелка; 10 — ось

Рисунок 10 - Переключатель ответвлений типа ТПСУ-9-120/10
hello_html_51d662e5.png
1 — бумажно-бакелитовая трубка; 2 — неподвижный контакт: 3 —подвижный контакт; 4 — пружина; 5 — болт; 6 — рейка; 7 — винт; 8 — держатель; 9 — колпак; 10 — указатель ступеней; 11 — фиксатор; 12 — шестерня; 13, 15 -- валы; 14 — бумажно-бакелитовая трубка; 16, 19 - втулки; 17 — сальниковая набивка; 18, 21 — гайки; 20, 22 — винты; 23 — кольцо

Рисунок 11 - Реечный переключатель ответвлений типа ПТО-10/63-65

8.Вводы трансформатора


Вводы служат для подключения трансформатора к сети. Вводы устанавливают в отверстиях на крышке или реже на боковой стенке бака. Существуют разные конструкции вводов, они зависят от электрических параметров (класса напряжения и величины тока), рода установки (внутренней или наружной) и от способа присоединения к обмоткам трансформатора. Токоведущий стержень или провод изолируют от крышки фарфоровыми изоляторами. Фарфор и металл крышки имеют разное объемное расширение при колебаниях температуры и поэтому жесткое крепление между ними не может обеспечить необходимой маслоплотности. Ранее применяли соединение изоляторов с металлическими деталями через специальную армировочную замазку. На рисунке 12 показан ввод ВН. Изолятор армирован в круглый фланец. Вводы НН рассчитаны на большие токи порядка сотен и тысяч ампер, и во избежание нагрева фланцев возникающими в них вихревыми токами, все три изолятора вводов НН (рисунок 13) армируют в обойму, которая крепится в общемотверстии крышки шпильками и гайками на уплотнении

. hello_html_m7d4d8ac6.png1 — фарфоровый изолятор; 2 — токоведущая шпилька: 3 — резиновая шайба: 4 — колпак; 5 — фланец; б — прокладка; 7 — электрокартонная шайба; 8— стальная шайба; 9— крышка трансформатора; 10 — армировочная замазка

Рисунок 12 - Армированный ввод ВН


hello_html_m112b0b8e.jpgРисунок 13 - Установка вводов НН в обойме

1 - контактный наконечник; 2 — болт с гайками и шайбами; 3 — болт наконечника; 4 — специальная гайка; 5 — латунная втулка; 6 — резиновое кольцо; 7 — латунный колпак; 8 — винт для выпуска воздуха; 9 — резиновая шайба; 10 — выступ шпильки: 11 — электрокартонная шайба; 12 — буртик шпильки; 13 — фарфоровый изолятор; 14 - токоведущая шпилька; 15 — установочная шпилька; 16 — гайка; 17 — фланец; 18 — кулачок; 19 — резиновая прокладка; 20 — крышка трансформатора; 21 — гетинаксовая втулка; 22 —медная шайба; 23 — гайкаРисунок 14 - Съемный ввод ВН


Теперь все трансформаторные заводы перешли на изготовление съемных вводов, которые более технологичны в ремонте: для замены поврежденного фарфорового изолятора не требуется разборка трансформатора и отсоединение отводов внутрибака. Изолятор (рисунок 14) ввода ВН крепится к крышке через кулачки из алюминиевого сплава. Их фиксирует в строгом положении стальной фланец.

Отверстия в крышке для вводов НН соединяются прорезью, заваренной немагнитным металлом. Магнитопровод с обмотками, внутренней изоляцией, переключателем ответвлений и отводами в собранном виде называют активной частью трансформатора. Активную часть устанавливают в баке трансформатора, закрывают крышкой и заливают трансформаторным маслом. Существуют две принципиально различные конструкции установки активной части в баке. В трансформаторах старых выпусков активная часть механически связана с крышкой при помощи вертикальных шпилек. После установки крышки производят полную сборку деталей и частей, компонуемых на ней: привода переключателя и вводов во фланцах или в обоймах. Затем активную часть вместе с крышкой опускают в бак, отперемещений она удерживается деревянными планками и раскосами. Такая конструкция имеет ряд недостатков. Требуется очень тщательная подгонка длины шпилек по месту; изменение размеров баков и магнитопроводов даже в пределах допусков ведет либо к вспучиванию крышки, либо к появлению зазора между активной частью и дном бака. В обоих случаях трансформатор при транспортировке может выйти из строя. Другим недостатком является необходимость уплотнять соединения шпилек с крышкой, что создает дополнительные возможности для просачивания масла. Теперь у всех трансформаторов I—II габаритов активную часть механически с крышкой не связывают; она крепится в баке двумя или четырьмя крюками. Бак закрывают крышкой и только затем собирают все наружные элементы. hello_html_m482773c5.png


9.Бак с арматурой


Проходной изолятор Бак трансформатора выполняет много функций. Это, во-первых, механическая основа, на ней внутри и снаружи крепятся все элементы трансформатора; это также и элемент охлаждения, передающий в окружающий воздух тепловые потери, и резервуар для масла, обладающий достаточной маслоплотностью. Ранее изготовлялись волнистые и трубчатые баки. Теперь все баки гладкие, овальной или прямоугольной формы. Для охлаждения используются ребра, приваренные к баку, или радиаторы из тонколистовых труб овального сечения (см. рисунок 1). Радиаторы могут быть съемными или вваренными. Съемные радиаторы легче ремонтировать, но от вибрации в их уплотнениях часто возникает течь масла. На баке крепится табличка паспортных данных. На ней обозначены все данные, требуемые при включении трансформатора в сеть, а также основные массы. К арматуре трансформатора относятся все вспомогательные устройства для нормальной длительной работы в условиях, для которых этот трансформатор предназначен: термосифонный фильтр для постоянной очистки масла от продуктов старения и случайно попадающей в него влаги; расширитель, обеспечивающий заполнение бака маслом и отсутствие в нем воздуха при колебаниях наружной температуры от +40 до —45°С; воздухоосушитель, через который сообщается воздушная полость расширителя с окружающим воздухом. Сорбент, засыпанный в воздухоосушитель, отбирает влагу из воздуха, поступающего в трансформатор при охлаждении ипонижении уровня масла в расширителе. Об увлажнении и необходимости замены сорбента или его восстановления свидетельствует изменение цвета с голубого на розовый индикаторного силикагеля, засыпанного в прозрачный колпак воздухоосушителя. У современных трансформаторов воздухоосушитель встраивают в расширитель. К арматуре относятся также все сливные и заливные пробки с уплотнениями и пробка для взятия пробы масла (она, как правило, совмещается со сливной пробкой). Охлаждающее оборудование забирает горячее масло в верхней части бака и возвращает охлажденное масло в нижнюю боковую часть. Холодильный агрегат имеет вид двух масляных контуров с непрямым взаимодействием, один внутренний и один внешний контур. Внутренний контур переносит энергию от нагревающих поверхностей к маслу. Во внешнем контуре масло переносит тепло к вторичной охлаждающей среде. Трансформаторы обычно охлаждаются атмосферным воздухом.

Виды охладителей:

  1. Радиаторы, бывают разных типов. В основном они представляют собой множество плоских каналов в пластинах с торцевым сварным швом, которые соединяют верхний и нижний коллекторы.

  2. Гофрированный бак является одновременно и баком и охлаждающей поверхностью для распределительных трансформаторов малой и средней мощности. Такой бак имеет крышку, гофрированные стенки бака и нижнюю коробку.

  3. Вентиляторы. Для больших узлов возможно использование подвесных вентиляторов под радиаторами или сбоку от них для обеспечения принудительного движения воздуха и естественного масляного и принудительного воздушного (ONAF) охлаждения. Это может увеличить нагрузочную способность трансформаторов примерно на 25%.

  4. Теплообменники с принудительной циркуляцией масла, воздуха. В больших трансформаторах отведение тепла при помощи естественной циркуляции через радиаторы требует много места. Потребность в пространстве для компактных охладителей намного ниже, чем для простых радиаторных батарей. С точки зрения экономии места может оказаться выгодным использовать компактные охладители со значительным аэродинамическим сопротивлением, что требует применения принудительной циркуляции масла с помощью насоса и мощных вентиляторов для нагнетания воздуха.

  5. Масляно-водяные охладители, как правило, представляют собой цилиндрические трубчатые теплообменники со съёмными трубками. Такие теплообменники очень распространены и представляют собой классическую технологию. Они имеют разнообразное применение в промышленности. Более современные конструкции, например, плоские теплообменники мембранного типа, еще не вошли в практику.

Масляные насосы. Циркуляционные насосы для масляного охлаждающего оборудования – это специальные компактные, полностью герметичные конструкции. Двигатель погружён в трансформаторное масло; сальниковые коробки отсутствуют.



Защитные и контрольно-измерительные устройства


Защитные и контрольно-измерительные устройства — несложные, но весьма ответственные; от их исправности зависят надежность работы трансформатора и безопасность людей, находящихся в непосредственной близости от подстанции.Трансформаторы с низшим напряжением до 525 В снабжают пробивным предохранителем (рисунок 15), который при пробое изоляции между обмотками ВН и НН или между отводами и появлении высокого потенциала на стороне НН соединяет цепь с землей (показано пунктиром). Рабочий элемент предохранителя — слюдяная прокладка с отверстиями, образующими искровые промежутки, которые пробиваются, т. е. перекрываются электрической дугой. Правильно налаженная релейная защита должна своевременно отключить трансформатор от сети.hello_html_10e63326.jpg


1 — обмотка ВН; 2 — обмотка НН; 3 — болт крепления крышки бака; 4 — перемычка; 5 — скоба; 6 — верхняя часть контактной головки; 7 — цокольный контакт; 8 — слюдяная прокладка с искровыми промежутками; 9 — нижняя часть контактной головки; 10 — центральный контакт; 11 — нулевой ввод; 12 — стенка бака; 13 — заземление бака

Рисунок 15 - Пробивной предохранитель

Контрольно-измерительными приборами у трансформаторов I—II габаритов являются маслоуказатель и стеклянный термометр. Маслоуказатель у современных трансформаторов выполнен почти заподлицо со съемным дном расширителя. Он показан на рисунке 16. На масломерном стекле или на дне расширителя имеются три риски, соответствующие нормальному уровню масла в расширителе (при +15°С), минимальному (при —45° С) и максимальному (при +40° С). У трансформаторов старых выпусков маслоуказатели делались трубчатые. Риски на дне расширителя соответствовали другим минимальному имаксимальному значениям температуры: —35 и +35° С.hello_html_4b3cf9f3.png

Термометр, показывающий температуру масла под крышкой трансформатора, устанавливают в специальной гильзе, пропущенной через крышку внутрь бака. Дно гильзы завальцовывают. Ранее допускалось применение ртутных термометров. Однако в связи со случаями их поломки и попаданием ртути внутрь бака на токоведущие части, что явилось причиной аварий трансформаторов, в настоящее время применяют только спиртовые термометры или электронные датчики.

Газовое реле

Газовое реле обычно находится в соединительной трубке между баком и расширительным баком.Действие газовой защиты основано на том, что всякие, даже незначительные, повреждения, а также повышенные нагревы внутри бака трансформатора (автотрансформатора) вызывают разложение масла и органической изоляции, что сопровождается выделением газа. Интенсивность газообразования и химический состав газа зависят от характера и размеров повреждения. Поэтому защита выполняется так, чтобы при медленном газообразовании подавался предупредительный сигнал, а при бурном газообразовании, что имеет место при коротких замыканиях, происходило отключение поврежденного трансформатора (автотрансформатора). Кроме того, газовая защита действует на сигнал и на отключение или только на сигнал при опасном понижении уровня масла в баке трансформатора или автотрансформатора.

Индикация температуры

Термометры обычно устанавливают для измерения температуры масла в верхнем слое и для индикации точек опасного перегрева в обмотке.

Встроенные трансформаторы тока

Трансформаторы тока могут располагаться внутри трансформатора, часто вблизи заземленного рукава на стороне масла проходных изоляторов, а также на низковольтных шинах. В данном вопросе роль играют цена, компактность и безопасность. При таком решении отпадает необходимость иметь несколько отдельных трансформаторов тока на сортировочной станции с внешней и внутренней изоляцией, рассчитанной на высокое напряжение.

Поглотители влаги

Необходимо удалить влагу из воздушного пространства над уровнем масла в расширительном баке, чтобы обеспечить отсутствие воды в масле трансформатора.

Системы защиты масла

Самой обычной системой защиты масла является открытый расширительный бак, в котором воздух над уровнем масла вентилируется через влагопоглотительноеустройство.Расширительный бак трансформатора может быть снабжён надувной подушкой. Надувная подушка из синтетического каучука располагается над маслом. Внутренне пространство подушки соединено с атмосферой, поэтому она может вдыхать воздух, когда трансформатор охлаждается и объем масла сжимается, и выдыхать воздух, когда трансформатор нагревается.Другим решением является расширительный бак, который разделён в горизонтальной плоскости мембраной или диафрагмой, которая позволяет маслу расширяться или сжиматься без прямого контакта с наружным воздухом.Пространство над маслом в расширительном баке можно заполнить азотом. Это можно делать из баллона со сжатым газом через редукторный клапан. Когда трансформатор вдыхает, редукторный клапан выпускает азот из баллона. Когда объём увеличивается, азот уходит в атмосферу через вентиляционный клапан.Для того, чтобы сэкономить потребление азота, можно задать некий шаг давления между наполнением азотом и выпусканием азота.Трансформаторы могут иметь герметическое исполнение. В маленьких маслонаполненных распределительных трансформаторах упругий гофрированный бак может компенсировать расширение масла. В ином случае необходимо обеспечить пространство над маслом внутри трансформаторного бака, заполненное сухим воздухом или азотом, чтобы они выполняли роль подушки при расширении или сжатии масла.Можно использовать сочетание различных решений. Трансформаторный бак может быть полностью заполнен маслом, и при этом иметь большой расширительный бак достаточного объёма для расширения масла и необходимой газовой подушки. Эта газовая подушка может иметь продолжение в следующем дополнительном баке, возможно на уровне земли. Для ограничения объёма газовой подушки можно открыть сообщение с наружной атмосферой при заданных верхнем и нижнем пределах внутреннего давления.

Указатели уровня масла

Указатели уровня масла применяются для определения уровня масла в расширительном баке, как правило, это приборы с циферблатом, либо стеклянная трубка, работающая по принципу соединенных сосудов, установленные прямо на расширительном баке. Индикация уровня масла находится на торцевой стороне расширительного бака.

Устройства сброса давления

Дуговой разряд или короткое замыкание, которые возникают в маслонаполненном трансформаторе, обычно сопровождаются возникновением сверхдавления в баке из-за газа, образующегося при разложении и испарении масла. Устройство сброса давления предназначено для снижения уровня сверхдавления вследствие внутреннего короткого замыкания и, таким образом, уменьшения риск разрыва бака и неконтролируемой утечки масла, которое может также осложниться возгоранием вследствие короткого замыкания. Малый вес тарелки клапана и низкая пружинная жёсткость закрывающих пружин обеспечивает быстрое и широкое открывание. Клапан вновь возвращается в нормальное закрытое состояние, когда сверхдавление спущено.

Устройства защиты от внезапного повышения давления

Реле внезапного повышения давления предназначено для срабатывания при возникновении упругой масляной волны в баке трансформатора при серьёзных замыканиях. Это устройство способно различать быстрое и медленное нарастание давления и автоматически отключает выключатель, если давление растёт быстрее, чем задано.

Устройства защиты от перенапряжений

Устройствами защиты силовых трансформаторов являются. Элементы РЗиА, на трасформаторах 6/10кВ чаще используются плавкие предохранитель

Расходомер

Для контроля вытекания масла из насосов в трансформаторах с принудительным охлаждением устанавливаются масляные расходомеры. Работа расходомера обычно основана на измерении разницы давления по обе стороны от препятствия в потоке масла. Расходомеры также применяются для измерения расхода воды в водоохлаждаемых трансформаторах.Обычно расходомеры оборудованы аварийной сигнализацией. Они также могут иметь циферблатный индикатор.


10.Трансформаторы силовые «сухие» типа ТСГЛ, ТСЗГЛ, ТСЗГЛФ


Трехфазные сухие трансформаторы с геафолевой литой изоляцией обмоток без кожуха (ТСГЛ) и с кожухом (ТСЗГЛ и ТСЗГЛФ), мощностью 100... 1600 кВА, класса напряжения 10 кВ.

Трансформаторы сухие, трехфазные, с геафолевой литой изоляцией серии ТСГЛ, ТСЗГЛ (с вводами ВН, внутри кожуха) и ТСЗГЛФ (с вводами ВН выведенными на фланец, расположенный на торцевой поверхности кожуха) предназначены для понижения напряжения в сетях энергосистем и потребителей электроэнергии.

В трансформаторах для изоляции обмоток используется эпоксидный компаунд с кварцевым наполнителем (геафоль).

Трансформаторы с этими обмотками обладают преимуществами перед другими сухими трансформаторами:

могут работать в сетях, подверженных грозовым и коммутационным перенапряжениям;

имеют сниженный уровень шума;

имеют высокую стойкость к механическим усилиям, возникающим в режиме короткого замыкания,

обеспечивают полную экологическую и пожарную безопасность.

hello_html_4e575b53.jpg

Трансформаторы силовой «сухой»




Автотрансформатор

hello_html_7ad9d16f.png

Схема автотрансформатора

Автотрансформаторвариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет, зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге - меньшая стоимость.


11.Список литературы


  1. Правило по охране труда при эксплуатации электроустановок. Утверждены Приказом Минтруда РФ от 24.07.2013 № 328н.

  2. Правила технической эксплуатации электроустановок потребителей, утвержденные приказом Минэнерго РФ от 13 января 2003г.№6.

  3. РД- 29.02000-КТН-087-10 Положение о системе технического обслуживания и ремонта энергетического оборудования магистральных нефтепроводов на давление до 10МПа.

  4. Правила устройств электроустановок.

  5. Макиенко Н.И. Практические работы по слесарному делу: Учеб. пособие для проф. техн. училищ. – М.:2013. – 208 с.

  6. Бутырин П. А. Электротехника.- Москва, 2013. – 65 с.

Автор
Дата добавления 06.04.2016
Раздел Доп. образование
Подраздел Другие методич. материалы
Просмотров717
Номер материала ДБ-013326
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх