Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Химия / Презентации / Ученический проект "Шпаргалки по теме "Подгруппа азота". История открытия, токсикология

Ученический проект "Шпаргалки по теме "Подгруппа азота". История открытия, токсикология

  • Химия
1)Азот 2) Фосфор 3)Мышьяк 4) Сурьма 5) Висмут История открытия элементов. Нах...
В 1772 году Генри Кавендиш провёл следующий опыт: он многократно пропускал во...
Азот в природе встречается главным образом в свободном состоянии. В воздухе о...
Сам по себе атмосферный азот достаточно инертен, чтобы оказывать непосредстве...
Фосфор открыт гамбургским алхимиком Хеннигом Брандом в 1669 году. Подобно дру...
Фосфор - один из самых распространённых элементов земной коры, его содержание...
Красный фосфор практически нетоксичен (токсичность ему придают примеси белого...
Мышьяк является одним из древнейших элементов, используемых человеком. Сульфи...
Мышьяк — рассеянный элемент. Содержание в земной коре 1,7·10−4% по массе. В м...
Отравления мышьяком могут быть случайными, умышленными (по­пытка самоубийства...
Сурьма известна с глубокой древности. В странах Востока она употреблялась при...
Кларк сурьмы — 500 мг/т. Её содержание в изверженных породах в общем ниже, че...
Данные по отравлениям сурьмой у человека скудны и опираются глав­ным образом...
Предположительно латинское Bismuthum или bisemutum происходит от немецкого we...
Содержание висмута в земной коре — 2·10−5 % по массе, в морской воде — 2·10−5...
Висмут применяется в медицине уже почти 300 лет. Он входил в состав мазей, а...
1 из 21

Описание презентации по отдельным слайдам:

№ слайда 1 1)Азот 2) Фосфор 3)Мышьяк 4) Сурьма 5) Висмут История открытия элементов. Нах
Описание слайда:

1)Азот 2) Фосфор 3)Мышьяк 4) Сурьма 5) Висмут История открытия элементов. Нахождение в природе. Действие на организм

№ слайда 2
Описание слайда:

№ слайда 3 В 1772 году Генри Кавендиш провёл следующий опыт: он многократно пропускал во
Описание слайда:

В 1772 году Генри Кавендиш провёл следующий опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем поглощался щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли. Интересен тот факт, что он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новый химический элемент — инертный газ аргон. Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным — не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным). Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота. Одновременно схожие эксперименты с тем же результатом проводил и Карл Шееле. В 1772 году азот (под названием «испорченного воздуха») как простое вещество описал Даниэль Резерфорд, он опубликовал магистерскую диссертацию, где указал основные свойства азота (не реагирует со щелочами, не поддерживает горения, непригоден для дыхания). Именно Даниэль Резерфорд и считается первооткрывателем азота. Однако и Резерфорд был сторонником флогистонной теории, поэтому также не смог понять, что же он выделил. Таким образом, чётко определить первооткрывателя азота невозможно. История открытия

№ слайда 4 Азот в природе встречается главным образом в свободном состоянии. В воздухе о
Описание слайда:

Азот в природе встречается главным образом в свободном состоянии. В воздухе объемная доля его составляет 78,09%, а массовая доля - 75,6%. Соединения азота в небольших количествах содержатся в почвах. Азот входит в состав белковых веществ и многих естественных органических соединений. Общее содержание азота в земной коре 0,01%. В атмосфере азота содержится примерно 4 квадрильона (4·1015) тонн, а в океанах - около 20 триллионов (20·1012) тонн. Незначительная часть этого количества - около 100 миллиардов тонн - ежегодно связывается и включается в состав живых организмов. Из этих 100 миллиардов тонн связанного азота только 4 миллиарда тонн содержится в тканях растений и животных - все остальное накапливается в разлагающих микроорганизмах и в конце концов возвращается в атмосферу. 

№ слайда 5 Сам по себе атмосферный азот достаточно инертен, чтобы оказывать непосредстве
Описание слайда:

Сам по себе атмосферный азот достаточно инертен, чтобы оказывать непосредственное влияние на организм человека и млекопитающих. Тем не менее, при повышенном давлении он вызывает наркоз, опьянение или удушье (при недостатке кислорода); при быстром снижении давления азот вызывает кессонную болезнь.

№ слайда 6
Описание слайда:

№ слайда 7 Фосфор открыт гамбургским алхимиком Хеннигом Брандом в 1669 году. Подобно дру
Описание слайда:

Фосфор открыт гамбургским алхимиком Хеннигом Брандом в 1669 году. Подобно другим алхимикам, Бранд пытался отыскать философский камень, а получил светящееся вещество. Бранд сфокусировался на опытах с человеческой мочой, так как полагал, что она, обладая золотистым цветом, может содержать золото или нечто нужное для его добычи. Первоначально его способ заключался в том, что сначала моча отстаивалась в течение нескольких дней, пока не исчезнет неприятный запах, а затем кипятилась до клейкого состояния. Нагревая эту пасту до высоких температур и доводя до появления пузырьков, он надеялся, что, сконденсировавшись, они будут содержать золото. После нескольких часов интенсивных кипячений получались крупицы белого воскоподобного вещества, которое очень ярко горело и к тому же мерцало в темноте. Бранд назвал это вещество phosphorus mirabilis (лат. «чудотворный носитель света»). Открытие фосфора Брандом стало первым открытием нового элемента со времён античности. Картина Джозефа Райта «Алхимик, открывающий фосфор» (1771 год), предположительно описывающая открытие фосфора Хеннигом Брандом. Несколько позже фосфор был получен другим немецким химиком — Иоганном Кункелем. Независимо от Бранда и Кункеля фосфор был получен Р. Бойлем, описавшим его в статье «Способ приготовления фосфора из человеческой мочи», датированной 14 октября 1680 года и опубликованной в 1693 году. Усовершенствованный способ получения фосфора был опубликован в 1743 году Андреасом Маргграфом. Существуют данные, что фосфор умели получать ещё арабские алхимики в XII в . То, что фосфор — простое вещество, доказал Лавуазье.

№ слайда 8 Фосфор - один из самых распространённых элементов земной коры, его содержание
Описание слайда:

Фосфор - один из самых распространённых элементов земной коры, его содержание составляет 0,08-0,09 % её массы. В свободном состоянии не встречается из-за высокой химической активности. Образует около 190 минералов, важнейшими из которых являются апатит Ca5(PO4)3F, фосфорит Ca3(PO4)2 и другие. Фосфор содержится во всех частях зелёных растений, ещё больше его в плодах и семенах. Содержится в животных тканях, входит в состав белков и других важнейших органических соединений (АТФ), является элементом жизни. 

№ слайда 9 Красный фосфор практически нетоксичен (токсичность ему придают примеси белого
Описание слайда:

Красный фосфор практически нетоксичен (токсичность ему придают примеси белого фосфора). Пыль красного фосфора, попадая в легкие, вызывает пневмонию при хроническом действии. Белый фосфор очень ядовит, растворим в липидах. Смертельная доза белого фосфора — 50—150 мг. Попадая на кожу, тлеющий белый фосфор даёт тяжелые ожоги. Острые отравления фосфором проявляются жжением во рту и желудке, головной болью, слабостью, рвотой. Через 2—3 суток развивается желтуха. Для хронических форм характерны нарушение кальциевого обмена, поражение сердечно-сосудистой и нервной систем. Первая помощь при остром отравлении — промывание желудка, слабительное, очистительные клизмы, внутривенно растворы глюкозы. При ожогах кожи обработать пораженные участки растворами медного купороса или соды. ПДКпаров фосфора в воздухе производственных помещений — 0,03 мг/м³, временно допустимая концентрация в атмосферном воздухе — 0,0005 мг/м³, ПДК в питьевой воде — 0,0001 мг/дм³.

№ слайда 10
Описание слайда:

№ слайда 11 Мышьяк является одним из древнейших элементов, используемых человеком. Сульфи
Описание слайда:

Мышьяк является одним из древнейших элементов, используемых человеком. Сульфиды мышьяка As2S3 и As4S4, так называемые аурипигмент («арсеник») и реальгар, были знакомы римлянам и грекам. Эти вещества ядовиты. Мышьяк является одним из элементов, встречающихся в природе в свободном виде. Его можно сравнительно легко выделить из соединений. Поэтому история не знает, кто впервые получил в свободном состоянии элементарный мышьяк. Многие приписывают роль первооткрывателя алхимику Альберту Великому. В трудах Парацельса также описано получение мышьяка в результате реакции арсеника с яичной скорлупой. Многие историки науки предполагают, что металлический мышьяк был получен значительно раньше, но он считался представителем самородной ртути. Это можно объяснить тем, что сульфид мышьяка был очень похож на ртутный минерал. И выделение из него было очень легким, как и при выделении ртути. Элементарный мышьяк был известен в Европе и в Азии ещё со средних веков. Китайцы получали его из руд. Мышьяк — ядовитое вещество. Европейцы не могли диагностировать наступление смерти из-за отравления мышьяком, а вот китайцы могли это делать. Но этот метод анализа до настоящих времен не дошел, так и остался загадкой. Европейцы научились определять наступление смерти при отравлении мышьяком, это впервые сделал Д.Марше. Данная реакция используется и в настоящее время. Мышьяк иногда встречается в оловянных рудах. В китайской литературе средних веков описаны случаи смерти людей, которые выпивали воду или вино из оловянных сосудов, из-за наличия в нём мышьяка. Сравнительно долго люди путали сам мышьяк и его оксид, принимали за одно вещество. Это недоразумение было устранено Г.Брандтом и А.Лавуазье, которые и доказали, что это разные вещества, и что мышьяк — самостоятельный химический элемент. Оксид мышьяка долгое время использовался для уничтожения грызунов. Отсюда и происхождение русского названия элемента. Оно происходит от слов «мышь» и «яд».

№ слайда 12 Мышьяк — рассеянный элемент. Содержание в земной коре 1,7·10−4% по массе. В м
Описание слайда:

Мышьяк — рассеянный элемент. Содержание в земной коре 1,7·10−4% по массе. В морской воде 0,003 мг/л. Этот элемент иногда встречается в природе в самородном виде, минерал имеет вид металлически блестящих серых скорлупок или плотных масс, состоящих из мелких зёрнышек. Известно около 200 мышьяковосодержащих минералов. В небольших концентрациях часто сопутствует свинцовым, медным и серебряным рудам. Довольно распространены два природных минерала мышьяка в виде сульфидов (бинарных соединений с серой): оранжево-красный прозрачный реальгар AsS и лимонно-жёлтый аурипигмент As2S3. Минерал, имеющий промышленное значение для получения мышьяка, — арсенопирит (мышьяковый колчедан) FeAsS или FeS2•FeAs2 (46 % As), также перерабатывают мышьяковистый колчедан — лёллингит (FeAs2) (72,8 % As),скородит FeAsO4 (27 — 36 % As). Большая часть мышьяка добывается попутно при переработке мышьяковосодержащих золотых, свинцово-цинковых, медноколчеданных и других руд.

№ слайда 13 Отравления мышьяком могут быть случайными, умышленными (по­пытка самоубийства
Описание слайда:

Отравления мышьяком могут быть случайными, умышленными (по­пытка самоубийства или покушение на убийство), производственны­ми, ятрогенными или в результате поступления мышьяка из окружаю­щей среды. В последнем случае его источником обычно являются поч­ва, вода либо пищевые продукты, при этом из неорганических веществ преобладают соединения пятивалентного мышьяка. В последние 20 лет примеси мышьяка в питьевой воде стали ведущей причиной массовых хронических отравлений этим веществом. Недавно Агентство по охра­не окружающей среды снизило максимальную допустимую кон­центрацию мышьяка в питьевой воде до 0,01 мг/л. Основанием для этого послужили данные статистического моделирования, согласно которым при концентрации мышьяка 0,05 мг/л, ранее считавшейся до­пустимой, повышается риск рака легких и мочевого пузыря.

№ слайда 14
Описание слайда:

№ слайда 15 Сурьма известна с глубокой древности. В странах Востока она употреблялась при
Описание слайда:

Сурьма известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. В Древнем Египте уже в 19 в. до н. э. порошок сурьмяного блеска (природный Sb2S3) под названием mesten или stem применялся для чернения бровей. В Древней Греции он был известен как στίμμι и στίβι, отсюда лат. stibium. Около 12—14 вв. н. э. появилось название antimonium. Подробное описание свойств и способов получения сурьмы и её соединений впервые дано алхимиком Василием Валентином (Германия) в 1604. В 1789 А. Лавуазье включил сурьму в список химических элементов под названием antimoine (современный английский antimony, испанский и итальянский antimonio, немецкий Antimon). Русское слово «сурьма» произошло от турецкого и крымскотатарского sürmä ; им обозначался порошок свинцового блеска PbS, также служивший для чернения бровей (по другим данным, «сурьма» — от персидского «сурме» — металл). История открытия

№ слайда 16 Кларк сурьмы — 500 мг/т. Её содержание в изверженных породах в общем ниже, че
Описание слайда:

Кларк сурьмы — 500 мг/т. Её содержание в изверженных породах в общем ниже, чем в осадочных. Из осадочных пород наиболее высокие концентрации сурьмы отмечаются в глинистых сланцах (1,2 г/т), бокситах и фосфоритах (2 г/т) и самые низкие в известняках и песчаниках (0,3 г/т). Повышенные количества сурьмы установлены в золе углей. Сурьма, с одной стороны, в природных соединениях имеет свойства металла и является типичным халькофильным элементом, образуя антимонит. С другой стороны она обладает свойствами металлоида, проявляющимися в образовании различных сульфосолей — бурнонита, буланжерита, тетраэдрита, джемсонита, пираргирита и др. С такими металлами, как медь, мышьяк и палладий, сурьма может давать интерметаллические соединения. Ионный радиус сурьмы Sb3+ наиболее близок к ионным радиусам мышьяка и висмута, благодаря чему наблюдается изоморфное замещение сурьмы и мышьяка в блёклых рудах и геокроните Pb5(Sb, As)2S8 и сурьмы и висмута в кобеллите Pb6FeBi4Sb2S16 и др. Сурьма в небольших количествах (граммы, десятки, редко сотни г/т) отмечается в галенитах, сфалеритах, висмутинах, реальгарах и других сульфидах. Летучесть сурьмы в ряде её соединений сравнительно невысокая. Наиболее высокой летучестью обладают галогениды сурьмы SbCl3. В гипергенных условиях (в приповерхностных слоях и на поверхности) антимонит подвергается окислению примерно по следующей схеме: Sb2S3 + 6O2 = Sb2(SO4)3. Возникающий при этом сульфат окиси сурьмы очень неустойчив и быстро гидролизирует, переходя в сурьмяные охры — сервантит Sb2O4, стибиоконит Sb2O4 • nH2O, валентинит Sb2O3 и др. Растворимость в воде довольно низкая (1,3 мг/л), но она значительно возрастает в растворах щелочей и сернистых металлов с образованием тиокислоты типа Na3SbS3. Содержание в морской воде — 0,5 мкг/л. Главное промышленное значение имеет антимонит Sb2S3 (71,7 % Sb). Сульфосоли тетраэдрит Cu12Sb4S13, бурнонит PbCuSbS3, буланжерит Pb5Sb4S11 и джемсонит Pb4FeSb6S14 имеют небольшое значение.

№ слайда 17 Данные по отравлениям сурьмой у человека скудны и опираются глав­ным образом
Описание слайда:

Данные по отравлениям сурьмой у человека скудны и опираются глав­ным образом на описания производственных отравлений и побочных эффектов при лечении лейшманиоза. Умышленное отравле­ние сурьмой встречается крайне редко. Симптомы хронического отравления сурьмой при производственном кон­такте с сурьмой развиваются исподволь. Важно помнить, что сурьмя­ные руды содержат небольшие примеси мышьяка, и поэтому бывает трудно определить, чем именно вызвана симптоматика. При лечении антипаразитарными препаратами возможно острое или подострое от­равление. При попадании вещества внутрь развивается острое отравление, сим­птомы которого сходны с таковыми при отравлении мышьяком и ток­сичными металлами.

№ слайда 18
Описание слайда:

№ слайда 19 Предположительно латинское Bismuthum или bisemutum происходит от немецкого we
Описание слайда:

Предположительно латинское Bismuthum или bisemutum происходит от немецкого weisse Masse, «белая масса». В Средневековье висмут часто использовался алхимиками во время опытов. Добывающие руду шахтёры называли его tectum argenti, что означает «производство серебра», при этом они считали, что висмут был наполовину серебром. Висмут использовали не только в Европе. Инки применяли висмут в процессе изготовления холодного оружия, из-за него мечи отличались особой красотой, а их блеск был вызван радужным окислением, которое являлось следствием образования на поверхности металла тонкой плёнки оксида висмута. Однако висмут не был отнесен к самостоятельному элементу, и полагали, что он является разновидностью свинца, сурьмы или олова. Впервые о висмуте упоминается в 1546 году в трудах немецкого минералога и металлурга Георгиуса Агриколы. В 1739 г. немецким химиком Поттом И. Г. было установлено, что висмут является всё-таки отдельным химическим элементом. Через 80 лет шведский химик Берцелиус впервые ввел символ элемента Bi в химическую номенклатуру. История открытия

№ слайда 20 Содержание висмута в земной коре — 2·10−5 % по массе, в морской воде — 2·10−5
Описание слайда:

Содержание висмута в земной коре — 2·10−5 % по массе, в морской воде — 2·10−5 мг/л. В рудах находится как в форме собственных минералов, так и в виде примеси в некоторых сульфидах и сульфосолях других металлов. В мировой практике около 90 % всего добываемого висмута извлекается попутно при металлургической переработке свинцово-цинковых, медных, оловянных руд и концентратов, содержащих сотые и иногда десятые доли процента висмута. Висмутовые руды, содержащие 1 % и выше висмута, встречаются редко. Минералами висмута, входящими в состав таких руд, а также руд других металлов, являются висмут самородный (содержит 98,5—99 % Bi), висмутин Bi2S3 (81,30 % Bi),тетрадимит Bi2Te2S (56,3—59,3 % Bi), козалит Pb2Bi2S5 (42 % Bi), бисмит Bi2O3 (89,7 % Bi), бисмутит Bi2CO3(OH)4 (88,5—91,5 % Bi), виттихенит Cu3BiS3, галеновисмутит PbBi2S4, айкинит CuPbBiS3.

№ слайда 21 Висмут применяется в медицине уже почти 300 лет. Он входил в состав мазей, а
Описание слайда:

Висмут применяется в медицине уже почти 300 лет. Он входил в состав мазей, а также средств для приема внутрь при различных заболеваниях ЖКТ. Уже в 1802 г. была отмечена его нефротоксичность. В начале XX века наблюдались случаи почечной недостаточности у детей, кото­рым вводили соли висмута в/м для лечения стоматита. В прошлом в/м инъекциями солей висмута лечили сифилис. Иногда при этом развивалась диффузная пятнистая сыпь на туловище и конеч­ностях, проходившая самостоятельно («эритема девятого дня»). Позд­нее наблюдались вспышки энцефалопатии, осо­бенно среди перенесших илеостомию или колостомию. В США внутрь чаше всего назначают субсалицилат висмута. Входя­щий в его состав салицилат хорошо (до 90%) всасывается в ЖКТ. Опи­саны случаи отравления салицилатом, поэтому и при кратковремен­ном, и при длительном приеме данного препарата обязательно опреде­ляют сывороточную концентрацию салицилата. Отмечены отдельные случаи метгемоглобинемии, вызванной субнитратом висмута.

Автор
Дата добавления 19.11.2016
Раздел Химия
Подраздел Презентации
Просмотров7
Номер материала ДБ-369070
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх