Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Урок алгебры "Решение неравенств методом интервалов"

Урок алгебры "Решение неравенств методом интервалов"


  • Математика

Поделитесь материалом с коллегами:

Урок алгебры в 9 «Б» классе

Тема: Решение неравенств методом интервалов


Цели:1. Закрепить умение учащихся определять по графику область определения, область значений функции; находить промежутки знакопостоянства, нули функции, наибольшее и наименьшее значение.

2. Закреплять умение учащихся решать неравенства с одной переменной методом интервалов, упражняться в выполнении тестирования, применять решение неравенств к нахождению области определения функции.

3. Развивать вычислительные навыки, математическую речь.

Оборудование: мультимедия, бланки тестов.


Ход урока


1.Организация начала урока.

2. Повторение ранее изученного:

1) Устная работа

Слайд 3 - 4

2)Работа по графику:

а) определить область определения, область значений, промежутки, когда функция принимает положительные значения, промежутки, когда функция принимает отрицательные значения, минимальное значение функции, нули функции.

Слайд 5.

б) определить область определения, область значений, неотрицательные значения, нули функции, наибольшее значение функции.

Слайд 6.

3) Выполнение теста, с последующей проверкой.

Вариант№1


hello_html_210203f8.png


  1. Область определения функции :

а)(-; -3), б) (-; +), в) (-3; -1)

2. Указать промежуток, когда функция принимает положительные значения:

а) (-1;+), б) (-;-3)(-1;+) ,в) (-3;-1)

3. Записать нули функции:

а) -3, -1; б) 0; в) 3,0


Вариант №2


hello_html_m5e985e6e.png

  1. Область значений функции:

а)(-; 3), б) (-; +), в) [-3; + )

2. Указать промежуток, когда функция принимает отрицательные значения:

а) (-; +), б) (-3;-1),

в) (-;-3)(-1;+)

3. Записать нули функции:

а) -3, -1; б) 0; в) 3,0

Проверка теста слайд 8 - 9


3. Работа по теме урока:

1) Работа с неравенством : слайд 11

(х+4)(х-2)(х-3)<0

Рассмотрим функцию f(х)=(х+4)(х-2)(х-3)

Нули функции х=-4 х=2 х=3

Как определить точки на луче? Как расставить знаки? Какой знак нужен? Какие промежутки удовлетворяют неравенству?

Ответ: ( -∞;-4) È(2;3)


2) работа у доски

Решить неравенства:

а)(10х+3)(17-х)(х-5)≥0 слайд 12

Решение:

1.Из первой скобки вынесем 10, из второй – за скобки, получим

-10(х+3/10)(х-17)(х-5)≥0, разделим на -10: (х+3/10)(х-17)(х-5)≤0

2.Рассмотрим функцию f(x)=(х+0,3)(х-17)(х-5)

3. Нули функции х=-0,3; х=17, х=5

hello_html_m6b1523f2.png

Ответ: (-;-0,3][5;17].

2) Работа по учебнику слайд13 -15

334 а)hello_html_m5d8bae25.gif<0

Решение: равносильно: (х-5)(х+6)<0

  1. Рассмотрим функцию f(х)=(х-5)(х+6)

  2. Нули функции х=5, х=-6

hello_html_m4b666f6e.png

Ответ: (-6;5).


332 Что называется областью определения? Рассмотрим два случая: у=hello_html_1c0b0db.gif; у=hello_html_4b37a0c8.gif

б)у=hello_html_56e054b1.gif: (х+12)(х-1)(х-9)≥0

hello_html_m113e31c3.png

Ответ: [-12;1][9;+).

3) Самостоятельная работа слайд 17

1 вариант 2 вариант

Найти область определения функции:

у= hello_html_macb29a2.gif у=hello_html_61c90c63.gif

Решение:


(2х+5)(х-17)≥0 (х+9)(2х-8)≥0

f(х)=(х+2,5)(х-17) f(х)=(х+9)(х-4)

Нули функции

х=-2,5, х=17 х=-9, х=4

hello_html_m5edd09a6.pnghello_html_m663aeeba.png

Ответ: (-;-2,5][17;+) Ответ: (-; -9][4;+)

4. Итог урока.

Обобщающая беседа.

Оценки учащимся

Домашнее задание: п.15, №333, №336 слайд 18






Автор
Дата добавления 26.08.2015
Раздел Математика
Подраздел Конспекты
Просмотров141
Номер материала ДA-017397
Получить свидетельство о публикации

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх