Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Презентации / Урок - лекция по геометрии по теме "Сфера"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Урок - лекция по геометрии по теме "Сфера"

библиотека
материалов
Уравнение окружности следовательно уравнение окружности имеет вид: (x – x0)2...
Как изобразить сферу? R 1. Отметить центр сферы (т.О) 2. Начертить окружность...
Окружность и круг Часть плоскости, ограниченная окружностью, называется круго...
Исторические сведения о сфере и шаре Оба слова «шар» и «сфера» происходят от...
Задача 1. Зная координаты центра С(2;-3;0), и радиус сферы R=5, записать урав...
Уравнение сферы (x – x0)2 + (y – y0)2 + (z – z0)2 = R2 х у z М(х;у;z) R Задад...
Взаимное расположение окружности и прямой r d Если d < r, то прямая и окружно...
Взаимное расположение сферы и плоскости В зависимости от соотношения d и R во...
Сечение шара плоскостью есть круг. r Взаимное расположение сферы и плоскости...
d = R, т.е. если расстояние от центра сферы до плоскости равно радиусу сферы...
d > R, т.е. если расстояние от центра сферы до плоскости больше радиуса сферы...
Задача 2. Шар радиусом 41 дм пересечен плоскостью, находящейся на расстоянии...
Площадь сферы Площадь сферы радиуса R: Sсф=4πR2 Сферу нельзя развернуть на пл...
Задача 3. Найти площадь поверхности сферы, радиус которой = 6 см. Дано: сфера...
Итог урока определением сферы, шара; уравнением сферы; взаимным расположением...
19 1

Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Описание презентации по отдельным слайдам:

№ слайда 1 Уравнение окружности следовательно уравнение окружности имеет вид: (x – x0)2
Описание слайда:

Уравнение окружности следовательно уравнение окружности имеет вид: (x – x0)2 + (y – y0)2 = r2 С(х0;у0) М(х;у) х у О Зададим прямоугольную систему координат Оxy Построим окружность c центром в т. С и радиусом r Расстояние от произвольной т. М (х;у) до т.С вычисляется по формуле: МС = (x – x0)2 + (y – y0)2 МС = r , или МС2 = r2

№ слайда 2 Как изобразить сферу? R 1. Отметить центр сферы (т.О) 2. Начертить окружность
Описание слайда:

Как изобразить сферу? R 1. Отметить центр сферы (т.О) 2. Начертить окружность с центром в т.О 3. Изобразить видимую вертикальную дугу (меридиан) 4. Изобразить невидимую вертикальную дугу 5. Изобразить видимую гори-зонтальную дугу (параллель) 6. Изобразить невидимую горизонтальную дугу 7. Провести радиус сферы R О ур. окр.

№ слайда 3 Окружность и круг Часть плоскости, ограниченная окружностью, называется круго
Описание слайда:

Окружность и круг Часть плоскости, ограниченная окружностью, называется кругом. Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии r от данной точки. r – радиус; d – диаметр Опр. сферы r d r

№ слайда 4 Исторические сведения о сфере и шаре Оба слова «шар» и «сфера» происходят от
Описание слайда:

Исторические сведения о сфере и шаре Оба слова «шар» и «сфера» происходят от греческого слова «сфайра» - мяч. В древности сфера и шар были в большом почёте. Астрономические наблюдения над небесным сводом вызывали образ сферы. Пифагорейцы в своих полумистических рассуждениях утверждали, что сферические небесные тела располагаются друг от друга на расстоянии пропорциональном интервалам музыкальной гаммы. В этом усматривались элементы мировой гармонии. Отсюда пошло выражение «музыка сферы». Аристотель считал, что шарообразная форма, как наиболее совершенная, свойственна Солнцу, Земле, Луне и всем мировым телам. Так же он полагал, что Земля окружена рядом концентрических сфер. Сфера, шар всегда широко применялись в различных областях науки и техники. д/з прим.

№ слайда 5 Задача 1. Зная координаты центра С(2;-3;0), и радиус сферы R=5, записать урав
Описание слайда:

Задача 1. Зная координаты центра С(2;-3;0), и радиус сферы R=5, записать уравнение сферы. Решение так, как уравнение сферы с радиусом R и центром в точке С(х0;у0;z0) имеет вид (х-х0)2 + (у-у0)2 + (z-z0)2=R2, а координаты центра данной сферы С(2;-3;0) и радиус R=5, то уравнение данной сферы (x-2)2 + (y+3)2 + z2=25 Ответ: (x-2)2 + (y+3)2 + z2=25 ур. сферы

№ слайда 6 Уравнение сферы (x – x0)2 + (y – y0)2 + (z – z0)2 = R2 х у z М(х;у;z) R Задад
Описание слайда:

Уравнение сферы (x – x0)2 + (y – y0)2 + (z – z0)2 = R2 х у z М(х;у;z) R Зададим прямоугольную систему координат Оxyz Построим сферу c центром в т. С и радиусом R МС = (x – x0)2 + (y – y0)2 + (z – z0)2 МС = R , или МС2 = R2 C(x0;y0;z0) следовательно уравнение сферы имеет вид:

№ слайда 7 Взаимное расположение окружности и прямой r d Если d &lt; r, то прямая и окружно
Описание слайда:

Взаимное расположение окружности и прямой r d Если d < r, то прямая и окружность имеют 2 общие точки. d= r d> r Если d = r, то прямая и окружность имеют 1 общую точку. Если d > r, то прямая и окружность не имеют общих точек. Возможны 3 случая Сфера и плоск

№ слайда 8 Взаимное расположение сферы и плоскости В зависимости от соотношения d и R во
Описание слайда:

Взаимное расположение сферы и плоскости В зависимости от соотношения d и R возможны 3 случая… Введем прямоугольную систему координат Oxyz Построим плоскость α, сов-падающую с плоскостью Оху Изобразим сферу с центром в т.С, лежащей на положительной полуоси Oz и имеющей координаты (0;0;d), где d - расстояние (перпендикуляр) от центра сферы до плоскости α . α C(0;0;d) O

№ слайда 9 Сечение шара плоскостью есть круг. r Взаимное расположение сферы и плоскости
Описание слайда:

Сечение шара плоскостью есть круг. r Взаимное расположение сферы и плоскости Рассмотрим 1 случай d < R, т.е. если расстояние от центра сферы до плоскости меньше радиуса сферы, то сечение сферы плоскостью есть окружность радиусом r. r = R2 - d2 М С приближением секущей плоскости к центру шара радиус круга увеличивается. Плоскость, проходящая через диаметр шара, называется диаметральной. Круг, полученный в результате сечения, называется большим кругом. α C(0;0;d) O

№ слайда 10 d = R, т.е. если расстояние от центра сферы до плоскости равно радиусу сферы
Описание слайда:

d = R, т.е. если расстояние от центра сферы до плоскости равно радиусу сферы, то сфера и плоскость имеют одну общую точку Взаимное расположение сферы и плоскости Рассмотрим 2 случай α C(0;0;d) O

№ слайда 11 d &gt; R, т.е. если расстояние от центра сферы до плоскости больше радиуса сферы
Описание слайда:

d > R, т.е. если расстояние от центра сферы до плоскости больше радиуса сферы, то сфера и плоскость не имеют общих точек. Взаимное расположение сферы и плоскости Рассмотрим 3 случай α C(0;0;d) O

№ слайда 12 Задача 2. Шар радиусом 41 дм пересечен плоскостью, находящейся на расстоянии
Описание слайда:

Задача 2. Шар радиусом 41 дм пересечен плоскостью, находящейся на расстоянии 9 дм от центра. Найти радиус сечения. Дано: Шар с центром в т.О R=41 дм α - секущая плоскость d = 9 дм Найти: rсеч = ? Решение: Рассмотрим ∆ОМК – прямоугольный ОМ = 41 дм; ОК = 9 дм; МК = r, r = R2 - d2 по теореме Пифагора: МК2 = r2 = 412- 92 = 1681 - 81=1600 отсюда rсеч = 40 дм Ответ: rсеч = 40 дм r М К О R d

№ слайда 13 Площадь сферы Площадь сферы радиуса R: Sсф=4πR2 Сферу нельзя развернуть на пл
Описание слайда:

Площадь сферы Площадь сферы радиуса R: Sсф=4πR2 Сферу нельзя развернуть на плоскость. Опишем около сферы многогранник, так чтобы сфера касалась всех его граней. За площадь сферы принимается предел последовательности площадей поверхностей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани т.е.: Площадь поверхности шара равна учетверенной площади большего круга Sшара=4 Sкруга

№ слайда 14 Задача 3. Найти площадь поверхности сферы, радиус которой = 6 см. Дано: сфера
Описание слайда:

Задача 3. Найти площадь поверхности сферы, радиус которой = 6 см. Дано: сфера R = 6 см Найти: Sсф = ? Решение: Sсф = 4πR2 Sсф = 4π 62 = 144π см2 Ответ: Sсф = 144π см2

№ слайда 15 Итог урока определением сферы, шара; уравнением сферы; взаимным расположением
Описание слайда:

Итог урока определением сферы, шара; уравнением сферы; взаимным расположением сферы и плоскости; площадью поверхности сферы. Сегодня вы познакомились с:

№ слайда 16
Описание слайда:

№ слайда 17
Описание слайда:

№ слайда 18
Описание слайда:

№ слайда 19
Описание слайда:


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 22.11.2016
Раздел Математика
Подраздел Презентации
Просмотров82
Номер материала ДБ-379375
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх