Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / Урок математики 11 класс "Производная в заданиях ЕГЭ"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Урок математики 11 класс "Производная в заданиях ЕГЭ"

библиотека
материалов

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа с. Преображенка

Пугачевского района Саратовской области»












Консультация по математике

в 11 классе

по теме

«ПРОИЗВОДНАЯ ФУНКЦИИ

В ЗАДАНИЯХ ЕГЭ»






Провела учитель математики

Лысова М.А.













2013-2014 учебный год

Цель : развивать у учащихся навыки применения теоретических знаний по теме «Производная функции» для решения задач единого государственного экзамена.

Задачи

Образовательные: обобщить и систематизировать знания учащихся по теме

«Производная функции», рассмотреть прототипы задач ЕГЭ по данной теме, предоставить обучающимся возможность проверить свои знания при самостоятельном решении задач.

Развивающие: способствовать развитию памяти, внимания, навыков самооценки и самоконтроля; формированию основных ключевых компетенций (сравнение, сопоставление, классификация объектов, определение адекватных способов решения учебной задачи на основе заданных алгоритмов, способность самостоятельно действовать в ситуации неопределённости, контролировать и оценивать свою деятельность, находить и устранять причины возникших трудностей).

Воспитательные: способствовать:

формированию у учащихся ответственного отношения к учению;

развитию устойчивого интереса к математике;

созданию положительной внутренней мотивации к изучению математики.

Технологии: индивидуально–дифференцированного обучения, ИКТ.

Методы обучения: словесный, наглядный, практический, проблемный.

Формы работы: индивидуальная, фронтальная, в парах.

Оборудование и материалы для урока: проектор, экран, ПК для каждого ученика, тренажёр (Приложение №1),презентация к уроку (Приложение №2),индивидуально – дифференцированные карточки для самостоятельной работы в парах (Приложение №3),список сайтов сети Интернет, индивидуально-дифференцированное домашнее задание (Приложение №4).

Структура занятия

I.Организационный момент -1 мин.

II.Сообщение темы, цели занятия, мотивация учебной деятельности-1 мин.

III. Фронтальная работа. Тренинг «Задания В8 ЕГЭ». Анализ работы с тренажёром - 13 мин.

IV.Индивидуально - дифференцированная работа в парах. Самостоятельное решение задач В14. Взаимопроверка - 10 мин.

V. Проверка индивидуального домашнего задания. Задача с параметром С5 ЕГЭ

-3 мин.

VInline тестирование. Анализ результатов тестирования - 14 мин.

VII. Индивидуально – дифференцированное домашнее задание -1 мин.

VIII.Оценки за урок - 1 мин.

IX.Итог урока. Рефлексия -1 мин.

Ход занятия

I.Организационный момент.

II.Сообщение темы, цели занятия, мотивация учебной деятельности.

(Слайды 1-2,приложение №2)

-Тема нашего занятия «Производная функции в заданиях ЕГЭ». Всем известно высказывание «Мал золотник да дорог». Одним из таких «золотников» в математике является производная. Производная применяется при решении многих практических задач математики, физики, химии, экономики и других дисциплин. Она позволяет решать задачи просто, красиво, интересно.

Тема «Производная» представлена в заданиях части В (В9, В15) единого государственного экзамена. Некоторые задания С5 также можно решить с применением производной. Но для решения этих задач требуется хорошая математическая подготовка и нестандартное мышление.

Вы работали с документами, регламентирующими структуру и содержание контрольных измерительных материалов единого государственного экзамена по математике 2013. Сделайте вывод о том, какие знания и умения вам нужны для успешного решения задач ЕГЭ по теме «Производная».

(Слайды 3-4, приложение №2)

- Мы изучили «Кодификатор элементов содержания по МАТЕМАТИКЕ для составления контрольных измерительных материалов для проведения единого государственного экзамена»,

«Кодификатор требований к уровню подготовки выпускников», «Спецификацию контрольных измерительных материалов», «Демонстрационный вариант контрольных измерительных материалов единого государственного экзамена 2014» и выяснили, какие знания и умения о функции и её производной нужны для успешного решения задач по теме «Производная».

Необходимо

  • ЗНАТЬ

правила вычисления производных;

производные основных элементарных функций;

геометрический и физический смысл производной;
уравнение касательной к графику функции;
исследование функции с помощью производной.

  • УМЕТЬ

выполнять действия с функциями (описывать по графику поведение и свойства функции, находить её наибольшее и наименьшее значения).

  • ИСПОЛЬЗОВАТЬ

приобретенные знания и умения в практической деятельности и повседневной жизни.

- Вы владеете теоретическими знаниями по теме «Производная». Сегодня мы будем УЧИТЬСЯ ПРИМЕНЯТЬ ЗНАНИЯ О ПРОИЗВОДНОЙ ФУНКЦИИ ДЛЯ РЕШЕНИЯ ЗАДАЧ ЕГЭ. (Слайд 4, приложение №2)

Ведь недаром Аристотель говорил, что “УМ ЗАКЛЮЧАЕТСЯ НЕ ТОЛЬКО В ЗНАНИИ, НО И В УМЕНИИ ПРИМЕНЯТЬ ЗНАНИЯ НА ПРАКТИКЕ” (Слайд 5, приложение №2)

В конце урока мы вернёмся к цели нашего занятия и выясним, достигли ли её?

III. Фронтальная работа. Тренинг «Задания В9 ЕГЭ» (Приложение №1). Анализ работы с тренажёром.

- Выберите правильный ответ из четырёх предложенных.

- В чём, по вашему мнению, заключается сложность выполнения задания В8?

- Как вы думаете, какие типичные ошибки допускают выпускники на экзамене при решении этой задачи?

-При ответах на вопросы задания В8 вы должны уметь описывать по графику производной поведение и свойства функции, а по графику функции – поведение и свойства производной функции. А для этого нужны хорошие теоретические знания по следующим темам: «Геометрический и механический смысл производной. Касательная к графику функции. Применение производной к исследованию функций».

- Проанализируйте, какие задания вызвали у вас затруднения?

- Какие теоретические вопросы вам необходимо знать?

IV. Индивидуально - дифференцированная работа в парах. Самостоятельное решение задач В14. Взаимопроверка. (Приложение №3)

-Вспомните алгоритм решения задач (В14 ЕГЭ) на нахождение точек экстремума, экстремумов функции, наибольшего и наименьшего значений функции на промежутке с помощью производной.

-Решите задачи с помощью производной.

Перед учащимися поставлена проблема:

«Подумайте, можно ли решить некоторые задачи В14 другим способом, без применения производной?»

1 пара

1)В14. Найдите точку минимума функции у =10х-ln(х+9)+6

2)В14. Найдите наибольшее значение функции y =hello_html_6f7b4b22.gif

- Попытайтесь решить вторую задачу двумя способами.

2 пара

1)В14. Найдите наименьшее значение функции у=(х-10) hello_html_m415b15f4.gifна отрезке

[8; 10]

2)В14. Найти точку максимума функции у= - hello_html_166cb957.gif

(Учащиеся защищают своё решение, записывая основные этапы решения задач на доске. Учащиеся 1 пары предоставляют два способа решения задачи №2).

Разрешение проблемы. Вывод, который должны сделать учащиеся:

«Некоторые задачи В14 ЕГЭ на нахождение наименьшего и наибольшего значения функции можно решить без применения производной, опираясь на свойства функций».

- Проанализируйте, какая ошибка была допущена вами в задаче?

- Какие теоретические вопросы вам необходимо повторить?

V. Проверка индивидуального домашнего задания. Задача с параметром С5(ЕГЭ) (Слайды 7-8, приложение №2)

-Ученице было дано индивидуальное домашнее задание: из пособий по подготовке к ЕГЭ выбрать задачу с параметром (С5) и решить её с помощью производной.

(Учащаяся приводит решение задачи, опираясь на функционально - графический метод, как один из методов решения задач С5 ЕГЭ и даёт краткое объяснение данного метода).

- Какие знания о функции и её производной необходимы при решении задач С5 ЕГЭ?

VI. Оnline тестирование по заданиям В9, В14. Анализ результатов тестирования.

Сайт для тестирования на уроке: http://www.ege-online-test.ru/

- Кто не допустил ошибок?

- Кто испытывал трудность при тестировании? Почему?

- В каких заданиях допущены ошибки?

- Сделайте вывод, какие теоретические вопросы вам необходимо знать?

VII. Индивидуально – дифференцированное домашнее задание

(Слайд 9, приложение №2), (Приложение №4).

-Я подготовила список сайтов сети интернет для подготовки к ЕГЭ. Вы можете также проходить на этих сайтах Оnline тестирование. К следующему уроку вам нужно: 1) повторить теоретический материал по теме «Производная функции»;

2) на сайте «Открытый банк заданий по математике» (http://mathege.ru/) найти прототипы заданий В9и В15 и решить не менее 10 задач;

3) Учащимся, имеющим «4» по математике, решить задачи с параметрами. Остальным учащимся решить задачи 1-8 (вариант 1).

VIII. Оценки за урок.

- Какую оценку за урок ты бы себе поставил?

- Как ты думаешь, можно было бы тебе работать на уроке лучше?

IХ. Итог урока. Рефлексия

- Подведем итог нашей работы. Какова была цель урока? Как вы считаете, достигнута ли она?

-Посмотрите на доску и одним предложением, выбирая начало фразы, продолжите предложение, которое вам больше всего подходит.

Я почувствовал…

Я научился…

У меня получилось …

Я смог…

Я попробую …

Меня удивило, что

Мне захотелось…


-Можете ли вы сказать, что в ходе урока произошло обогащение запаса ваших знаний?

-Итак, вы повторили теоретические вопросы о производной функции, применили свои знания при решении прототипов заданий ЕГЭ (В9, В14), а одна ученица выполнила задачу С5 с параметром, которая является задачей повышенной степени сложности.

-Мне приятно было с вами работать, и надеюсь, что знания, полученные на уроках математики, вы сможете успешно применить не только при сдаче ЕГЭ, но и в дальнейшей своей учёбе.

- Закончить урок мне хотелось бы словами итальянского философа Фомы Аквинского «Знание – столь драгоценная вещь, что его не зазорно добывать из любого источника» (Слайд 10, приложение №2).

Желаю успехов в подготовке к ЕГЭ!




Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 19.10.2015
Раздел Математика
Подраздел Конспекты
Просмотров981
Номер материала ДВ-079057
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх