Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Урок математики в 6 классе
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Математика

Урок математики в 6 классе

библиотека
материалов

Длина окружности. Площадь круга.

(6 класс)

Учитель МАОУ «Гимназии № 80»

Уютнова Ирина Александровна


Цель урока: вывести в ходе практической работы формулы для вычисления

длины окружности и площади круга; показать учащимся

применение этих формул при решении задач; продолжить

формирование навыков практического конструирования у

учащихся и формирование умения видеть один и тот же факт в

различных ситуациях.


Оборудование :интерактивная доска и презентация, модели цилиндров, нить, палетки, модели кругов, циркули.


Основные методы обучения: частично-поисковый, репродуктивный, метод

моделирования.



Одним из эффективных средств развития мышления учащихся может выступать опытное обоснование геометрических формул, изучаемых в школе. Обращение на уроке к эксперименту способствует формированию у учащихся конструктивных умений, составляющих ту практическую сметку, которая нужна и в строительстве, и в технике, и в быту.

Однако в на стоящее время при обучении геометрии основное внимание обращают на воспитание у учащихся логической культуры, не видя возможности и необходимости специально заниматься формированием навыков практического конструирования. Приоритет логического аспекта в изложении материала ведет к тому, что многие научные факты учащиеся усваивают формально, без интереса. Не вникая глубоко в существо дела. Чрезмерное увлечение формально – логическими методами выглядит особенно навязчивым, когда изучаются формулы для вычисления площадей и объемов геометрических фигур. Это материал дает возможность эффективно применить методику «открытия» с помощью опыта некоторых геометрических фактов. Реализация этой методики проходит следующие этапы:

  • Учащимся предлагается прикладная задача, для решения которой известных им теоретических сведений не хватает. Учащимся необходимо самим установить, какие данные следует найти.

  • Учащиеся проводят практическую работу, в ходе которой устанавливают необходимые данные, выявляют закономерности и выражают их с помощью формул.

  • Полученная формула снова проверяется опытом, и, если он не подсказывает явных опровержений. Начинается поиск способов логического обоснования полученной формулы.

  • Общий вывод, подтвержденный логически, применяется к решению исходной прикладной задачи.



Ход урока.



  1. Устно.


1. Sкв = 25 см2 , a - ? ; Sкв = 81дм2 , a - ?

2. Длина прямоугольника равна 8см. Найдите сторону квадрата, если она

составляет:

  1. ¼ длины прямоугольника; 3/16 длины прямоугольника;

  2. 40% длины прямоугольника; 60%, 110%.

3. Придумать задачу по формуле: S = ab.

4. а = 3, P - ?

P = 17, a - ?

5. Решить кроссворд (ранее к данному уроку проведен конкурс кроссвордов

по теме «Окружность и круг»)



















По горизонтали:

1 – точка, от которой удалены все точки окружности;

2 – отрезок, соединяющий две точки окружности;

3 – хорда, проходящая через центр окружности;

4 – инструмент для построения окружности.

По вертикали:

5 – множество точек плоскости, равноудаленных т данной точки;

6 – инструмент, с помощью которого измеряют радиус окружности;

7 – ½ диаметра;

8 – какую часть окружности пройдет стрелка часов, если она покажет 4 часа.


Ответы: 1 – центр; 2 – хорда; 3 – диаметр; 4 – циркуль; 5 – окружность;

6 – линейка; 7 – радиус; 8 – третью.



  1. Объяснение нового.



- Вы уже знаете, как измерять длину отрезка, находить периметры многоугольников, площади квадратов и прямоугольников, объемы и площади поверхности прямоугольных параллелепипедов и кубов, измерять величины углов.

- Вы познакомились с простейшей кривой линией – окружностью и кругом как частью плоскости, ограниченной окружностью. А как измерить длину окружности, если окружность – кривая линия, а единица измерения длины – отрезок? Как вычислить площадь круга, если эта фигура, ограничена кривой линией, а единица измерения площади является квадрат, ограниченный отрезками?

- Запишем тему урока: «Длина окружности и площадь круга».

- Есть несколько способов непосредственного измерения длины окружности.

- У вас на столах есть все необходимое, подумайте, как можно измерить длину окружности.


(учащиеся предлагают способы)


На доске запись:

  • Найти способ измерения окружности.

  • Измерить длину окружности.

  • Измерить диаметр окружности.

  • Найти отношение длины окружности к диаметру.

1 способ (предлагают ученики).

На листе бумаги начертить прямую линию. Отметить на прямой точку касания цилиндра и окружности – точку А (отметить эту точку и на цилиндре). Затем плавно катить цилиндр по прямой (отметить точку В). Отрезок АВ = С. Измерив его с помощью избранной единицы измерения длины, мы тем самым измерим и длину окружности.















2 способ (предлагают ученики).

Обернуть край цилиндра веревкой (ниткой) по окружности так, чтобы конец нитки совпал с началом в одной и той же точке окружности. Затем растянуть эту нитку и измерить ее длину. Длина веревки (нитки) будет равна С.


- Однако эти способы непосредственного измерения С мало удобные и дают грубые приближенные результаты измерения. Поэтому уже с древних времен начали искать более совершенные пути (способы) измерения С.


Далее учитель спрашивает у учащихся и записывает результаты

С/d.

- Многие математики пытались доказать, что это отношение есть число постоянное, не зависящее от длины окружности, и найти более точное значение этого отношения. Впервые это удалось сделать древнегреческому математику Архимеду. Архимед установил, что отношение С/d – величина постоянная и нашел довольно точное значение этого отношения. Это отношение стали обозначать греческой буквой π – первой буквой греческого слова «периферия» - круг или «perimetron» - окружность.

- Таким образом, для вычисления длины окружности была установлена известная формула

С

= π ; С = π d ; d = 2 r ,то С = 2 πr.

d


Историческая справка об Архимеде. История развития числа π (рассказ ученика).



- Придумайте задачи на использования формул


1) С, если d = 7; 12 r = 8; 9; ½.

2) r (d ), если С = 32π; 48π.


С ≈ 7·3,14 = 21, 98 С ≈ 2· 8· 3,14 = 50, 24


- Задача (написана на доске).


Сколько метров ткани шириной 1,5 м потребуется, чтобы изготовить покрытие для арены цирка, если радиус арены равен 5м? При правильном раскрое площадь ткани составляет 120% покрываемой площади. (π ≈ 3)


S кр - ? Sтк = 1,2 Sкр


Ход решения обсуждается совместно с учащимися.


- Итак, необходимо знать формулу для вычисления S круга.

- Площадь можно найти непосредственным измерением несколькими способами.


1 способ (учащиеся работают с моделями круга, используя палетки ).

Подсчитайте сколько квадратиков лежит целиком внутри круга. Затем – сколько неполных квадратиков (эти квадратики лишь частично покрывают круг, то их число надо разделить на 2 и полученное частное прибавить к первому числу). Получим приближенное значение площади круга.


S = 74 + 30 : 2 = 89

Позже S ≈ 5,32 · 3,14 = 28,09 · 3,14 = 88,2026.


2 способ (работа с моделями кругов, разделенных цветом на две равные части).

Разрежьте круг (каждую половину на 8 частей) по радиусам не до конца. Получите две зубчатые фигуры, расправьте их и вложите одну зубчатую «пилу» в другую, а оставшийся последний зубец разрежьте по радиусу пополам и приложите одну часть слева, а другую – справа.

- Какую фигуру получили? Какую известную фигуру она напоминает?

(прямоугольник)








- Как найти его площадь?

(S = ab )

- Чему равны длина и ширина этого прямоугольника?

a = πr , b = r

- Найдите площадь фигуры

S = π · r · r = π r2 ( читается «пи эр квадрат»)

- Значит, площадь круга находится по формуле

S = π r2

- Проверим по этой формуле вычисления площади круга, которое произвели

по 1 способу.

- Получили достаточно близкие результаты.

- Решим задачу про арену цирка.


Sкр = 25π =75 (м2)

Sтк = 75·1,2 = 90 (м2)

90 : 1,5 = 60 (м)

Ответ: 60м.


- Устно.


1) S - ? r = 2; 11; 23.

2) r - ? S = 16π; 25π; 49π.



  1. Игровой момент.


1. В 3 в. до н.э. один из величайших математиков Древней Греции

Архимед без измерений. Одними лишь рассуждениями и вычислениями

нашел для числа π довольно точное значение. Назовите это архимедово

число (22/7).


2. Диаметр вала колодезного ворота равен 0,24м. Чтобы вытянуть ведро из

колодца, приходится делать 10 оборотов. Какова глубина колодца?

π ≈ 3,14 (0,24 · 3,14 · 10 = 7,536)


3. Не смотря на то, что число π было известно уже в Древней Греции,

обозначать его буквой π было предложено сравнительно недавно. Кем

и когда было предложено обозначать отношение длины окружности к

ее диаметру буквой π. ( Леонард Эйлер, 1736г.)


4. Вообразите, что вы обошли земной шар по экватору. На сколько при

этом верхушка вашей головы прошла более длинный путь, чем кончик

вашей ноги? ( 2 π (r + s ) - 2πr = 2πs)


5. Какой ответ скрыт в вопросе: «Что я знаю о круге?» (π ≈ 3,1415)

6. Каким словом можно заменить слова: длина окружности? (периметр)


7. Посмотрите внимательно на следующее приближенное равенство. Как

вы думаете, верно ли оно? Это еще не вопрос. Почему?



А теперь вопрос – задание. Переложите одну палочку так, чтобы данное приближенное равенство стало верным.



Итог урока.

- Окружность – удивительно гармоническая фигура, древние греки считали ее самой совершенной. Совершенство окружности – в расположении всех ее точек на одинаковом расстоянии от центра. Окружность обладает еще одним интересным свойством. Возьмем веревочку (нитку) и свяжем ее в кольцо. Положив полученное кольцо на плоскость, сделаем из него разные фигуры: квадрат, треугольник, окружность и т.д. Площадь, ограниченная окружностью ( то есть площадь круга) наибольшая среди полученных таким образом площадей.

Δ □


Путь получения формул:


Измерение → закономерность → формула



На уроке использовались эмпирические способы: измерение, вычисление, наблюдение.


Дома: п.24-25, две задачи из списка.





Задачи.


  1. Диаметр телескопа Крымской обсерватории 2,6м, что составляет 13/ 25 диаметра зеркала телескопа в обсерватории на горе Паламар (США) и 13/20 диаметра зеркала обсерватории в Карачаево – Черкесии. Определите длину окружности этих зеркал.

  2. Длина окружности экватора Земли 40075696м. Определите радиус экватора Земли.

  3. Определите диаметры стволов деревьев – гигантов у их оснований:

а) эвкалипта, длина окружности которого 25м;

б) мамонтова дерева, длина окружности которого 32м;

в) чинара (платана), длина окружности которого 42м.

  1. На судне был поставлен гребной винт – великан, но вскоре на другом судне был поставлен еще больший гребной винт. Сумма диаметров винтов составила 19,3м, а их разность – 2,7м. Вычислите диаметр и длину окружности каждого гребного винта.

  2. Почему канализационные люки делают круглыми, а не квадратными?

  3. На столе один пятак лежит неподвижно, а другой катится вокруг первого, касаясь его. Сколько раз он обернется вокруг своего центра, прежде чем вернется в исходное положение?

  4. Диаметр циферблата Кремлевских курантов 6,12м, а длина минутной стрелки 3,27м. Найдите площадь циферблата. Какой путь проходит конец минутной стрелки курантов за час ( ответ округлите до сотых долей метра) ?

8. Останкинская телебашня в Москве опирается на площадку, имеющую

форму кольца. Диаметр наружной окружности 63м, а внутренней

окружности 44м. вычислите площадь фундамента Останкинской

телебашни.

  1. У каких полуокружностей сумма длин больше – у верхних или у

нижних?







Автор
Дата добавления 06.12.2015
Раздел Математика
Подраздел Конспекты
Просмотров201
Номер материала ДВ-232619
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх